Auxin dictates root architecture via the Auxin Response Factor (ARF) family of transcription factors, which control lateral root (LR) formation. In Arabidopsis, ARF7 regulates the specification of prebranch sites (PBS) generating LRs through gene expression oscillations and plays a pivotal role during LR initiation. Despite the importance of ARF7 in this process, there is a surprising lack of knowledge about how ARF7 turnover is regulated and how this impacts root architecture. Here, we show that ARF7 accumulates in autophagy mutants and is degraded through NBR1-dependent selective autophagy. We demonstrate that the previously reported rhythmic changes to ARF7 abundance in roots are modulated via autophagy and might occur in other tissues. In addition, we show that the level of co-localization between ARF7 and autophagy markers oscillates and can be modulated by auxin to trigger ARF7 turnover. Furthermore, we observe that autophagy impairment prevents ARF7 oscillation and reduces both PBS establishment and LR formation. In conclusion, we report a novel role for autophagy during development, namely by enacting auxin-induced selective degradation of ARF7 to optimize periodic root branching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169494PMC
http://dx.doi.org/10.1038/s44319-024-00142-5DOI Listing

Publication Analysis

Top Keywords

arf7
10
selective autophagy
8
root branching
8
root architecture
8
arf7 turnover
8
autophagy
7
root
5
nbr1-mediated selective
4
autophagy arf7
4
arf7 modulates
4

Similar Publications

The tubers of Curcuma kwangsiensis are regarded as an important medicinal material in China. In C. kwangsiensis cultivation, tuber expansion is key to yield and quality, but the regulatory mechanisms are not well understood.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

Endoplasmic reticulum-anchored proteins in control of AUXIN RESPONSE FACTOR condensation.

Dev Cell

December 2024

Department of Plant and Crops, Fac Bioscience Engineering, Ghent University, Ghent, Belgium. Electronic address:

Sequestration of AUXIN RESPONSE FACTOR (ARF) transcription factors in cytoplasmic condensates represents a specialized mechanism for modulating cellular auxin responsiveness. In this issue of Developmental Cell, Xuan et al. show that MULTIPLE C2-DOMAIN AND TRANSMEMBRANE REGION PROTEIN (MCTP) proteins stimulate lateral root development by antagonizing ARF7 and ARF19 condensation.

View Article and Find Full Text PDF

Overexpression of Cassava Promotes Seedling Development.

Plants (Basel)

November 2024

Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

The sugar transporter (STP) gene family is a key regulator of plant development, which is crucial for the efficient transport and utilization of sugars during plant growth and development. In this study, we identified the gene, which is highly expressed in cassava fibrous roots, early storage roots, and under hormonal treatment, including IAA, MeJA, ABA, and GA, and abiotic stressors, such as mannitol and NaCl. A strong response was observed with exoqenous IAA.

View Article and Find Full Text PDF

TaZAT8-5B, a C2H2 zinc finger protein transcription factor, positively regulates drought tolerance in transgenic Arabidopsis. It promotes root growth under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. C2H2 zinc finger proteins (C2H2-ZFPs) represent the largest but relatively unexplored family of transcription factors in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!