Sci Rep
Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
Published: April 2024
A mechanistic understanding of algal growth is essential for maintaining a sustainable environment in an era of climate change and population expansion. It is known that algal growth is tightly controlled by complex interactive physical and chemical conditions. Many mathematical models have been proposed to describe the relation of algal growth and environmental parameters, but experimental verification has been difficult due to the lack of tools to measure cell growth under precise physical and chemical conditions. As such, current models depend on the specific testing systems, and the fitted growth kinetic constants vary widely for the same organisms in the existing literature. Here, we present a microfluidic platform where both light intensity and nutrient gradients can be well controlled for algal cell growth studies. In particular, light shading is avoided, a common problem in macroscale assays. Our results revealed that light and nitrogen colimit the growth of algal cells, with each contributing a Monod growth kinetic term in a multiplicative model. We argue that the microfluidic platform can lead towards a general culture system independent algal growth model with systematic screening of many environmental parameters. Our work advances technology for algal cell growth studies and provides essential information for future bioreactor designs and ecological predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058252 | PMC |
http://dx.doi.org/10.1038/s41598-024-59041-3 | DOI Listing |
Water Res
March 2025
Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Wide application of zinc oxide nanoparticles (ZnO NPs) and increasing frequency of heatwaves (HWs) have posed a great threat to freshwater ecosystems, while phytotoxicity of ZnO NPs mediated by HWs remains unclear. This study aims to link the physiological responses, bio-nano interactions, and metabolic mechanisms of Chlorella pyrenoidosa with ZnO NPs under heat stress. Results demonstrated a temperature-dependent growth inhibition against ZnO NPs, with a higher reduction of growth rate at 24 °C than 28 °C.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2025
Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
Light is a critical factor influencing algal growth and contributes to the uptake of metal elements by algae. However, the impact of light on the bioavailability and transformation of heavy metals requires further exploration, particularly in the context of bioremediation efforts. This study explores how varying light intensities (1000, 2000, and 3000 lux) influence the ability of these algae to absorb Cd, distribute it within cells, and transform Cd (II) into CdS NPs.
View Article and Find Full Text PDFJ Phycol
March 2025
International Center for Biotechnology, Osaka University, Osaka, Japan.
The interdependence between microalgae and bacteria has sparked scientific interest over years, primarily driven by the practical applications of microalgal-bacteria consortia in wastewater treatment and algal biofuel production. Although adequate studies have focused on the broad interactions and general behavior between the two entities, there remains a scarcity of study on the metabolic role of symbiotic bacteria in promoting microalgal growth. Here, we use the KEIO Knockout Collection, an Escherichia coli gene knockout mutant library, to systematically screen for genes involved in the interdependence of Chlorella sorokiniana and E.
View Article and Find Full Text PDFEnviron Technol
March 2025
Vocational School of Technical Sciences, Agricultural Equipments and Machinery Program, Bursa Uludag University, Bursa, Turkey.
Increasing air pollutants significantly contributes to climate change, requiring innovative mitigation strategies. Microalgae provide a promising solution by absorbing CO₂ and pollutants like nitrogen oxides (NO), sulfur oxides (SO), and ammonia from agricultural and industrial emissions, while also generating biomass for biofuels and animal feed. This study investigated the effects of light intensity on the growth and biochemical composition of sp AQUAMEB-57, sp.
View Article and Find Full Text PDF3 Biotech
April 2025
Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India.
The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.