Highly efficient in crystallo energy transduction of light to work.

Nat Commun

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.

Published: April 2024

Various mechanical effects have been reported with molecular materials, yet organic crystals capable of multiple dynamic effects are rare, and at present, their performance is worse than some of the common actuators. Here, we report a confluence of different mechanical effects across three polymorphs of an organic crystal that can efficiently convert light into work. Upon photodimerization, acicular crystals of polymorph I display output work densities of about 0.06-3.94 kJ m, comparable to ceramic piezoelectric actuators. Prismatic crystals of the same form exhibit very high work densities of about 1.5-28.5 kJ m, values that are comparable to thermal actuators. Moreover, while crystals of polymorph II roll under the same conditions, crystals of polymorph III are not photochemically reactive; however, they are mechanically flexible. The results demonstrate that multiple and possibly combined mechanical effects can be anticipated even for a simple organic crystal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059232PMC
http://dx.doi.org/10.1038/s41467-024-47881-6DOI Listing

Publication Analysis

Top Keywords

mechanical effects
12
crystals polymorph
12
light work
8
organic crystal
8
work densities
8
crystals
5
highly efficient
4
efficient crystallo
4
crystallo energy
4
energy transduction
4

Similar Publications

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Objective: Soft tissue defects and postoperative wound healing complications related to calcaneus fractures may result in significant morbidity. The aim of this study was to investigate whether percutaneous minimally invasive screw internal fixation (PMISIF) can change this situation in the treatment of calcaneal fractures, and aimed to explore the mechanical effects of different internal fixation methods on Sanders type III calcaneal fractures through finite element analysis.

Methods: This retrospective analysis focused on 83 patients with Sanders II and III calcaneal fractures from March 2017 to March 2022.

View Article and Find Full Text PDF

Background: Complex regional pain syndrome (CRPS) is a debilitating condition characterised by significant heterogeneity. Early diagnosis is critical, but limited data exists on the condition's early stages. This study aimed to characterise (very) early CRPS patients and explore potential subgroups to enhance understanding of its mechanisms.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Objective: To investigate the effect of cervical margin relocation with four different injectable restorative materials on the fracture resistance of molars receiving mesio-occluso-distal CAD/CAM nanoceramic onlay restorations.

Materials And Methods: One hundred and five sound mandibular molars received a standardized mesio-occluso-distal onlay preparation, with cervical margins located 2 mm apical to the cemento-enamel junction. The molars were randomly allocated into five groups (n = 21) according to the cervical relocating materials used: Group I had no cervical margin relocation; Group II used a highly viscous glass ionomer; Group III used a highly-filled injectable resin composite; Group IV used a resin-modified glass ionomer; and Group V used a bioactive ionic resin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!