Sustainable manufacturing is crucial to achieving carbon neutrality targets. However, research on the sustainability of manufacturing systems is limited, and high consumption, low efficiency, and high emissions have resulted in high resource consumption and rapid environmental degradation. Therefore, it is of great importance to establish an evaluation and improvement indicator system conducive to sustainable development. To this end, this study developed a data-driven methodology for evaluating and enhancing the sustainability of manufacturing systems. Manufacturing system production process data, with data dimensions unified via the emergy method, were used to construct a sustainable development evaluation model that includes four perspectives: economy, environment, society, and sustainability. The model was applied to a flange production workshop in China to analyze the interrelation mechanisms among energy consumption, resource consumption, and environmental pollution, and identify optimization schemes to improve sustainability. After implementing these optimization schemes, the emergy yield rate (EYR) of the flange increased by 23.40%, the environmental load rate (ELR) decreased by 19.03%, the per capita emergy (EPP) increased by 6.88%, and the emergy-based sustainability index (ESI) increased by 52.76%. The method presented herein offers a novel and effective tool to analyze and visualize sustainable development in manufacturing systems and identify the relationship between technology and management in the manufacturing industry; however, this method is based on historical data and rules, and lacks of flexible response to unknown situations. The results provide a reference for enterprises to achieve sustainable and lean manufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33463-y | DOI Listing |
Biosens Bioelectron
January 2025
Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:
Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.
View Article and Find Full Text PDFJ Cataract Refract Surg
January 2025
Great Lakes Eye Care, Saint Joseph, MI, USA.
Purpose: To investigate the impact of the distance from the most-anterior surface of the optic to the principal object plane (POP) and from the foremost haptic to the principal object plane (H-POP) on the intraocular lens (IOL) power calculation.
Setting: A tertiary hospital.
Design: Optical simulation and retrospective cross-sectional study.
Chem Rev
January 2025
Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins.
View Article and Find Full Text PDFSci Adv
January 2025
QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.
Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!