Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (μSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 μm were formed: (1) uniform structure with 1 MPa structural modulus ( ) designed to match equilibrium modulus of healthy articular cartilage, (2)  = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage (  = 1 MPa) and bone (  = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68-81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff μSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-024-03516-xDOI Listing

Publication Analysis

Top Keywords

digital light
8
controlled mechanical
4
mechanical property
4
property gradients
4
gradients digital
4
light processing
4
processing printed
4
printed hydrogel-composite
4
hydrogel-composite osteochondral
4
osteochondral scaffold
4

Similar Publications

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Research on Digital Terrain Construction Based on IMU and LiDAR Fusion Perception.

Sensors (Basel)

December 2024

Institute of Automotive Engineering, Jiangsu University, Zhenjiang 212013, China.

To address the shortcomings of light detection and ranging (LiDAR) sensors in extracting road surface elevation information in front of a vehicle, a scheme for digital terrain construction based on the fusion of an Inertial Measurement Unit (IMU) and LiDAR perception is proposed. First, two sets of sensor coordinate systems were configured, and the parameters of LiDAR and IMU were calibrated. Then, a terrain construction system based on the fusion perception of IMU and LiDAR was established, and improvements were made to the state estimation and mapping architecture.

View Article and Find Full Text PDF

3D Scanning of Surgical Specimens to Improve Communication Between Surgeon and Pathologist: A Head and Neck Pilot Study.

Cancers (Basel)

December 2024

Department of Medical and Surgical Specialities, Radiological Sciences and Public Health (DSMC), University of Brescia, 25123 Brescia, Italy.

Successful surgical outcomes in head and neck cancer depend on the accurate identification of resection margins. Effective communication between surgeons and pathologists is critical, but is often jeopardised by challenges in sampling and orienting anatomically complex specimens. This pilot study aims to evaluate the use of 3D scanning of surgical specimens as a tool to improve communication and optimise the pathology sampling process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!