To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202402434 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.
View Article and Find Full Text PDFClin Infect Dis
January 2025
Infectious Diseases Unit, Policlinico San Martino Hospital-IRCCS, Genoa, Italy.
Background: This study assesses the impact of fluconazole resistance on 30-day all-cause mortality and 1-year recurrence in patients with Candida parapsilosis bloodstream infections (BSI).
Methods: A multicenter retrospective study was performed at 3 hospitals in Italy and Spain between 2018 and 2022. Adult patients with positive blood cultures for C.
Adv Sci (Weinh)
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.
View Article and Find Full Text PDFSmall
January 2025
College of Resources, Hunan Agricultural University, Changsha, 410128, China.
The exploration of photocatalytic materials with efficient charge separation has always been a prominent area of research in photocatalysis. In the preceding years, the strategy of constructing donor-acceptor (D-A) structured materials has gradually been developed in photocatalytic systems, becoming a new research crossroads and attracting extensive interdisciplinary focus. Polymeric carbon nitride (PCN) has gradually been recognized as the primary photocatalytic material for constructing D-A structures due to its attractive exceptional physicochemical stability, electronic band structure, and cost-effectiveness.
View Article and Find Full Text PDFCirc Cardiovasc Qual Outcomes
January 2025
Division of Cardiology Lifespan Cardiovascular Institute, Warren Alpert Medical School of Brown University, Providence, RI (J.D.A.).
Background: In-hospital mortality risk prediction is an important tool for benchmarking quality and patient prognostication. Given changes in patient characteristics and treatments over time, a contemporary risk model for patients with acute myocardial infarction (MI) is needed.
Methods: Data from 313 825 acute MI hospitalizations between January 2019 and December 2020 for adults aged ≥18 years at 784 sites in the National Cardiovascular Data Registry Chest Pain-MI Registry were used to develop a risk-standardized model to predict in-hospital mortality.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!