Digitally reconstructed radiography (DRR) plays an important role in the registration of intraoperative x-ray and preoperative CT images. However, existing DRR algorithms often neglect the critical isocentric fixed angle irradiation (IFAI) principle in C-arm imaging, resulting in inaccurate simulation of x-ray images. This limitation degrades registration algorithms relying on DRR image libraries or employing DRR images (DRRs) to train neural network models. To address this issue, we propose a novel IFAI-based DRR method that accurately captures the true projection transformation during x-ray imaging of the human body.By strictly adhering to the IFAI principle and utilizing known parameters from intraoperative x-ray images paired with CT scans, our method successfully simulates the real projection transformation and generates DRRs that closely resemble actual x-ray images.Experimental results validate the effectiveness of our IFAI-based DRR method by successfully registering intraoperative x-ray images with preoperative CT images from multiple patients who underwent thoracic endovascular aortic procedures.. The proposed IFAI-based DRR method enhances the quality of DRR images, significantly accelerates the construction of DRR image libraries, and thereby improves the performance of x-ray and CT image registration. Additionally, the method has the generality of registering CT and x-ray images generated by large C-arm devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad450a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!