Significance: A wearable optical apparatus that compensates for eye misalignment (strabismus) to correct for double vision (diplopia) is proposed. In contrast to prism lenses, commonly used to compensate for horizontal and/or vertical misalignment, the proposed approach is able to compensate for any combination of horizontal, vertical, and torsional misalignment.
Purpose: If the action of the extraocular muscles is compromised (e.g., by nerve damage), a patient may lose their ability to maintain visual alignment, negatively affecting their binocular fusion and stereo depth perception capability. Torsional misalignment cannot be mitigated by standard Fresnel prism lenses. Surgical procedures intended to correct torsional misalignment may be unpredictable. A wearable device able to rectify visual alignment and restore stereo depth perception without surgical intervention could potentially be of great value to people with strabismus.
Methods: We propose a novel lightweight wearable optical device for visual alignment correction. The device comprises two mirrors and a Fresnel prism, arranged in such a way that together they rotationally shift the view seen by the affected eye horizontally, vertically, and torsionally. The extent of the alignment correction on each axis can be arbitrarily adjusted according to the patient's particular misalignment characteristics.
Results: The proposed approach was tested by computer simulation, and a prototype device was manufactured. The prototype device was tested by a strabismus patient exhibiting horizontal and torsional misalignment. In these tests, the device was found to function as intended, allowing the patient to enjoy binocular fusion and stereo depth perception while wearing the device for daily activities over a period of several months.
Conclusions: The proposed device is effective in correcting arbitrary horizontal, vertical, and torsional misalignment of the eyes. The results of the initial testing performed are highly encouraging. Future study is warranted to formally assess the effectiveness of the device on multiple test patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/OPX.0000000000002122 | DOI Listing |
J Sleep Res
January 2025
Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.
The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.
View Article and Find Full Text PDFActa Ophthalmol
January 2025
Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.
Purpose: The Teller Acuity Card (TAC) procedure is a preferential-looking method to assess visual acuity in infants and preverbal children and provides a quantitative measure of grating acuity. Several studies containing reference values have been published, the majority based on an older version of the TAC card set. In 2003, a new version of the TAC was released, called the TAC II.
View Article and Find Full Text PDFLife Med
December 2024
Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
Proper chromosome alignment at the spindle equator is a prerequisite for accurate chromosome segregation during cell division. However, the chromosome movement trajectories prior to alignment remain elusive. Here, we established a 4D imaging analysis framework to visualize chromosome dynamics and develop a deep-learning model for chromosome movement trajectory classification.
View Article and Find Full Text PDFPerception
January 2025
State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, China.
Previous research has indicated that exposure to sensory stimuli of short or long durations influences the perceived duration of subsequent stimuli within the same modality. However, it remains unclear whether this adaptation is driven by the stimulus physical duration or by the perceived duration. We hypothesized that the absence of cross-modal duration adaptation observed in earlier studies was due to the mismatched perceived durations of adapting stimuli.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, St.Gallen, 9006, SWITZERLAND.
Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!