Alkaline fuel cells rely on the movement of hydroxide anions (OH) for their operation, yet these anions face challenges in efficient conduction due to their limited diffusion coefficient and substantial mass compared to proton (H) transport. Within the covalent organic framework structure, ordered channels offer a promising solution for the OH ion transport. Herein, we synthesized a cationic covalent organic framework (vTAPA) via the solvothermal-assisted Zincke reaction. vTAPA showcases excellent stability in harsh basic solution (12 M) and a wide range of pH. This framework facilitates OH conduction through its one-dimensional network through the anion exchange process. We employed various tertiary ammonium salts (tetramethyl, tetraethyl, and tetrabutyl ammonium hydroxide) to exchange trapped anionic chloride ions inside the vTAPA structure with OH ions. The density functional theory (DFT) study exhibited that the anion exchange process is very favorable, as the vTAPA framework offers preferable interaction sites for OH ions. The impact of steric hindrance from these tertiary ammonium salts on the OH conduction performance was extensively investigated. Butyl@vTAPA exhibited a high OH ion conductivity of 1.05 × 10 S cm at 90 °C under 98% relative humidity (RH). Our uniquely designed cationic covalent organic frameworks (COF) created a platform for a preferential transport network of hydroxide ions, and this is the first report of directly used COFs for hydroxide ion conduction without any vigorous postsynthetic modification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03736DOI Listing

Publication Analysis

Top Keywords

covalent organic
16
hydroxide ion
8
ion conduction
8
organic frameworks
8
organic framework
8
cationic covalent
8
anion exchange
8
exchange process
8
tertiary ammonium
8
ammonium salts
8

Similar Publications

Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.

View Article and Find Full Text PDF

The Friedel-Crafts reaction has been extensively applied to the preparation of various porous organic polymers because of its simple operation and abundant building blocks. However, due to its poor reversibility and excessive random reactive sites, the synthesis of crystalline organic polymers/frameworks by Friedel-Crafts reaction has never been realized so far. Herein, we develop a molecular confined Friedel-Crafts reaction strategy to achieve rapid preparation (within only 30 minutes) of highly crystalline covalent triazine frameworks (CTFs) with tailorable functionality for the first time.

View Article and Find Full Text PDF

Bionic Luminescent Sensors Based on Covalent Organic Frameworks: Auditory, Gustatory, and Olfactory Information Monitoring for Multimode Perception.

ACS Nano

January 2025

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.

View Article and Find Full Text PDF

A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine.

Talanta

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China. Electronic address:

Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS).

View Article and Find Full Text PDF

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!