Frequent nonhomologous replacement of replicative helicase loaders by viruses in .

Proc Natl Acad Sci U S A

Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan.

Published: May 2024

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in . Our analysis of genomes revealed two genes with unknown function, named and , that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that encodes a helicase loader. The in vitro assay showed that VdhL1 and VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that / were derived from phages and replaced an intrinsic helicase loader gene of over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087808PMC
http://dx.doi.org/10.1073/pnas.2317954121DOI Listing

Publication Analysis

Top Keywords

helicase loader
20
loader gene
12
frequent nonhomologous
8
nonhomologous replacement
8
helicase
8
replicative helicase
8
unknown function
8
viral helicase
8
genes
6
gene
5

Similar Publications

SSB promotes DnaB helicase passage through DnaA complexes at the replication origin oriC for bidirectional replication.

J Biochem

January 2025

Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.

View Article and Find Full Text PDF

Multiple mechanisms for licensing human replication origins.

Nature

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.

Article Synopsis
  • The loading of MCM2-7 helicases is crucial for assembling DNA replication machinery, with human loading pathways differing from that of yeast, particularly regarding the role of ORC6.
  • Through biochemical reconstitution and electron microscopy, researchers identified several intermediate states in the formation of MCM double hexamers, revealing that ORC6 enhances but is not essential for loading MCM onto DNA.
  • The flexibility in the human loading process, including the potential dimerization of independently loaded MCM hexamers, may offer advantages during cellular replication stress, paving the way for future studies on DNA replication initiation.
View Article and Find Full Text PDF
Article Synopsis
  • The loading of the bacterial helicase DnaB for genome replication relies on accessory proteins, particularly DciA, which is not well understood.
  • Research showed that DciA from Vibrio cholerae forms fluid condensates when interacting with single-stranded DNA, displaying phase separation behavior.
  • DnaB is recruited to these condensates while DciA is released, and similar behavior is observed with the helicase loader DnaC from E. coli, suggesting that DciA may help create non-membrane compartments for DNA replication.
View Article and Find Full Text PDF

Replicative helicases are assembled on chromosomes by helicase loaders before initiation of DNA replication. Here, we investigate mechanisms used by the bacterial DnaB replicative helicase and the DciA helicase loader. In the present structure of the DnaB-ssDNA•ATPγS complex, the amino-terminal (NTD) tier, previously found as an open spiral in a GDP•AlF4 complex, was observed to adopt a closed planar arrangement.

View Article and Find Full Text PDF

Structural Insight Into the Function of DnaB Helicase in Bacterial DNA Replication.

Proteins

February 2025

Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China.

In bacteria, chromosome replication is achieved by the coordinations of more than a dozen replisome enzymes. Replication initiation protein DnaA melts DNA duplex at replication origin (oriC) and forms a replication bubble, followed by loading of helicase DnaB with the help of loader protein DnaC. Then the DnaB helicase unwinds the dsDNA and supports the priming of DnaG and the polymerizing of DNA polymerase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!