A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning-Based Prediction of Reduction Potentials for Pt Complexes. | LitMetric

Machine Learning-Based Prediction of Reduction Potentials for Pt Complexes.

J Chem Inf Model

PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende87036,Italy.

Published: May 2024

Some of the well-known drawbacks of clinically approved Pt complexes can be overcome using six-coordinate Pt complexes as inert prodrugs, which release the corresponding four-coordinate active Pt species upon reduction by cellular reducing agents. Therefore, the key factor of Pt prodrug mechanism of action is their tendency to be reduced which, when the involved mechanism is of outer-sphere type, is measured by the value of the reduction potential. Machine learning (ML) models can be used to effectively capture intricate relationships within Pt complex data, leading to highly accurate predictions of reduction potentials and other properties, and offering significant insights into their electrochemical behavior and potential applications. In this study, a machine learning-based approach for predicting the reduction potentials of Pt complexes based on relevant molecular descriptors is presented. Leveraging a data set of experimentally determined reduction potentials and a diverse range of molecular descriptors, the proposed model demonstrates remarkable predictive accuracy (MSE = 0.016 V, RMSE = 0.13 V, = 0.92). Ab initio calculations and a set of different machine learning algorithms and feature engineering techniques have been employed to systematically explore the relationship between molecular structure and similarity and reduction potential. Specifically, it has been investigated whether the reduction potential of these compounds can be described by combining ML models across different combinations of constitutional, topological, and electronic molecular descriptors. Our results not only provide insights into the crucial factors influencing reduction potentials but also offer a rapid and effective tool for the rational design of Pt complexes with tailored electrochemical properties for pharmaceutical applications. This approach has the potential to significantly expedite the development and screening of novel Pt prodrug candidates. The analysis of principal components and key features extracted from the model highlights the significance of structural descriptors of the 2D Atom Pairs type and the lowest unoccupied molecular orbital energy. Specifically, with just 20 appropriately selected descriptors, a notable separation of complexes based on their reduction potential value is achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c00315DOI Listing

Publication Analysis

Top Keywords

reduction potentials
20
reduction potential
16
molecular descriptors
12
reduction
10
machine learning-based
8
potentials complexes
8
machine learning
8
complexes based
8
complexes
6
potential
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!