Reactively canceling movements is a vital feature of the motor system to ensure safety. This behavior can be studied in the laboratory using the stop-signal task. There remains ambiguity about whether a "point-of-no-return" exists, after which a response cannot be aborted. A separate question concerns whether motor system inhibition associated with attempted stopping persists when stopping is unsuccessful. We address these two questions using electromyography (EMG) in two stop-signal task experiments. Experiment 1 (n = 24) involved simple right and left index finger responses in separate task blocks. Experiment 2 (n = 28) involved a response choice between the right index and pinky fingers. To evaluate the approximate point of no return, we measured EMG in responding fingers during the 100 msec preceding the stop signal and observed significantly greater EMG amplitudes during failed than successful stopping in both experiments. Thus, EMG before the stop signal differentiated success, regardless of whether there was a response choice. To address whether motor inhibition persists after failed stopping, we assessed EMG peak-to-offset durations and slopes (i.e., rate of EMG decline) for go, failed stop, and successful stop (partial response) trials. EMG peak-to-offset was shorter and steeper for failed stopping compared to go and successful stop partial response trials, suggesting motor inhibition persists even when failing to stop. These findings indicate EMG is sensitive to a "transition zone" at which the relative likelihood of stop failure versus success inverts and also suggest peak-to-offset time of response-related EMG activity during failed stopping reflects stopping-related inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_02174 | DOI Listing |
BMC Pediatr
January 2025
Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, China.
Background: Current treatment of giant omphalocele in newborns is not standardized. The main treatments include one-time repair and staged surgery using synthetic and biologic mesh, or silos. However, surgery can lead to various postoperative complications.
View Article and Find Full Text PDFeNeuro
January 2025
Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery.
Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.
Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.
Setting: Tertiary referral center.
Psychol Med
January 2025
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
Background: The mechanisms underlying generalized forms of dissociative ('psychogenic') amnesia are poorly understood. One theory suggests that memory retrieval is inhibited via prefrontal control. Findings from cognitive neuroscience offer a candidate mechanism for this proposed retrieval inhibition.
View Article and Find Full Text PDFChildren (Basel)
November 2024
School of Medicine and Dentistry, Griffith University, Gold Coast 4222, QLD, Australia.
Digital impressions are increasingly used to manage Cleft lip and/or palate (CL/P), potentially offering advantages over traditional methods. This laboratory investigation sought to evaluate the impact of scanning tip sizes, different scanners, and scanning strategies on intraoral scanning in neonates with CL/P. Ten soft acrylic models were used to simulate the oral anatomy of neonates with CL/P, evaluating parameters such as the ability of different scanning tips to capture alveolar cleft depth, scanning time, number of scan stops, and scan quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!