Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiview attribute graph clustering aims to cluster nodes into disjoint categories by taking advantage of the multiview topological structures and the node attribute values. However, the existing works fail to explicitly discover the inherent relationships in multiview topological graph matrices while considering different properties between the graphs. Besides, they cannot well handle the sparse structure of some graphs in the learning procedure of graph embeddings. Therefore, in this article, we propose a novel contrastive multiview attribute graph clustering (CMAGC) with adaptive encoders method. Within this framework, the adaptive encoders concerning different properties of distinct topological graphs are chosen to integrate multiview attribute graph information by checking whether there exists high-order neighbor information or not. Meanwhile, the number of layers of the GCN encoders is selected according to the prior knowledge related to the characteristics of different topological graphs. In particular, the feature-level and cluster-level contrastive learning are conducted on the multiview soft assignment representations, where the union of the first-order neighbors from the corresponding graph pairs is regarded as the positive pairs for data augmentation and the sparse neighbor information problem in some graphs can be well dealt with. To the best of our knowledge, it is the first time to explicitly deal with the inherent relationships from the interview and intraview perspectives. Extensive experiments are conducted on several datasets to verify the superiority of the proposed CMAGC method compared with the state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2024.3391801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!