Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.10) characterized by a transposon insertion in the gene smoA encoding the alpha subunit of the plasmid-located SDIMO SmoABCD. The mutant BCP1-2.10 showed a reduced capacity to grow on propane, lost the ability to grow on butane, pentane and n-hexane and was heavily impaired in the capacity to degrade chloroform and trichloroethane. The expression of the additional SDIMO prmABCD in BCP1-2.10 probably allowed the mutant to partially grow on propane and to degrade it, to some extent, together with the other short-chain n-alkanes. The complementation of the mutant, conducted by introducing smoABCD in the genome as a single copy under a constitutive promoter or within a plasmid under a thiostreptone-inducible promoter, allowed the recovery of the alkanotrophic phenotype as well as the capacity to degrade chlorinated n-alkanes. The heterologous expression of smoABCD allowed a non-alkanotrophic Rhodococcus strain to grow on pentane and n-hexane when the gene cluster was introduced together with the downstream genes encoding alcohol and aldehyde dehydrogenases and a GroEL chaperon. BCP1 smoA gene was shown to belong to the group 6 SDIMOs, which is a rare group of monooxygenases mostly present in Mycobacterium genus and in a few Rhodococcus strains. SmoABCD originally evolved in Mycobacterium and was then acquired by Rhodococcus through horizontal gene transfer events. This work extends the knowledge of the biotechnologically relevant SDIMOs by providing functional and evolutionary insights into a group 6 SDIMO in Rhodococcus and demonstrating its key role in the metabolism of short-chain alkanes and degradation of chlorinated n-alkanes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057499PMC
http://dx.doi.org/10.1111/1751-7915.14453DOI Listing

Publication Analysis

Top Keywords

soluble di-iron
8
sdimo smoabcd
8
key role
8
grow propane
8
pentane n-hexane
8
capacity degrade
8
chlorinated n-alkanes
8
smoabcd
5
unravelling role
4
group
4

Similar Publications

Conventional physical and chemical treatment technologies for 1,4-dioxane can be ineffective and consequently attention has focused on bioremediation. Towards this, the current research investigated the impact of basal salts medium (BSM) and yeast extract on 1,4-dioxane biodegradation rates in microcosms with different soil or sediment (agricultural soil, wetland sediment, sediment from an impacted site). Phylotypes responsible for carbon uptake from 1,4-dioxane were determined using stable isotope probing (SIP), both with and without BSM and yeast extract.

View Article and Find Full Text PDF

Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series () emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells.

View Article and Find Full Text PDF

Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.

View Article and Find Full Text PDF

A novel soluble di-iron monooxygenase from the soil bacterium Solimonas soli.

Environ Microbiol

February 2024

School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.

Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S.

View Article and Find Full Text PDF

A multicomponent propane monooxygenase catalyzes the initial degradation of methyl -butyl ether in JOB5.

Appl Environ Microbiol

October 2023

MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

Methyl -butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by JOB5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!