Exploring the Role of Central Metals in Bulky Phthalocyanines for Dye-Sensitized Solar Cells.

Chemistry

Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid Cantoblanco, 28049, Madrid, Spain.

Published: July 2024

Two series of metallo-(Zn(II), Mg(II), and Ru(II)) and free-base phthalocyanines (Pcs) with a carboxyl anchoring group and well-established bulky peripheral substituents (either tert-butyl or bulky 2,6-diisopropylphenoxy) were synthesized and tested as sensitizers in dye-sensitized solar cells (DSSCs). The trend of photovoltaic efficiencies (PCEs) for free-base and metallo Pcs followed the order Zn(II)Pc>Mg(II)Pc≫H2Pc ≈ Ru(II)Pc regardless of the peripheral substitution. Higher efficiencies (4.95 versus 3.63 for the Zn(II) derivatives) were achieved with Pcs bearing the bulkier 2,6-diisopropylphenoxy group, indicating a lower aggregation and more suitable HOMO-LUMO levels. Furthermore, these derivatives showed a morelevant influence of the metal on the PCE values (from the highest 4.95 for the Zn(II)Pc to the lowest 0.23 for the Ru(II)Pc. In both series, the best PCEs observed with the Zn(II) derivatives were mainly due to their highest J values. The lowest efficiencies found for the free-bases and Ru(II) derivatives were attributed to a mismatch between their LUMO levels and the conduction band of the TiO,and lower light-harvesting capabilities, respectively. In conclusion, Zn(II) derivatives are still the best Pc candidates to use as sensitizers in molecular photovoltaics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400468DOI Listing

Publication Analysis

Top Keywords

znii derivatives
12
dye-sensitized solar
8
solar cells
8
derivatives
5
exploring role
4
role central
4
central metals
4
metals bulky
4
bulky phthalocyanines
4
phthalocyanines dye-sensitized
4

Similar Publications

Two artificial imidazole-derived nucleobases, HQIm (3H-imidazo[4,5-f]quinolin-5-ol) and CaIm (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions CoII, NiII and ZnII, as well as with the lanthanoid ions EuIII and SmIII, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.

View Article and Find Full Text PDF

Crystal structures and photophysical properties of mono- and dinuclear Zn complexes flanked by tri-ethyl-ammonium.

Acta Crystallogr E Crystallogr Commun

October 2024

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.

View Article and Find Full Text PDF

Use of Intramolecular Quinol Redox Couples to Facilitate the Catalytic Transformation of O and O-Derived Species.

Acc Chem Res

January 2025

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States.

ConspectusThe redox reactivity of transition metal centers can be augmented by nearby redox-active inorganic or organic moieties. In some cases, these functional groups can even allow a metal center to participate in reactions that were previously inaccessible to both the metal center and the functional group by themselves. Our research groups have been synthesizing and characterizing coordination complexes with polydentate quinol-containing ligands.

View Article and Find Full Text PDF

A consistent part of gas sensor research activities aims to improve sensing performances by synthesizing new sensing materials, improving the selection of elements in arrays, and optimizing the feature extraction and classification algorithms. This paper combines most of these aspects to confer selectivity to a low-selectivity sensor by using feature extraction algorithms applied to the sensor response kinetics. Several algorithms were employed to represent the kinetic behavior of the sensor response during the adsorption and desorption phases.

View Article and Find Full Text PDF

Five metal dithiocarbamate complexes [M(PTHIQDTC)] [where PTHIQDTC is (S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline dithiocarbamate anion and M is Ni(II) (1), Sn(II) (2), Hg(II) (3), Pb(II) (4) and Zn(II) (5)] were synthesized from the reaction of MX (X is Cl for 1-3 and OAc for 4-5) with ligand of triethylammonium (S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline dithiocarbamate [EtNH][PTHIQDTC] in methanolic solution at room temperature. The five complexes were characterized by IR, H andC NMR, mass spectrometry, elemental analysis and TGA analysis. Recrystallization of [Zn(PTHIQDTC)] (5) in dimethylsulfoxide (DMSO) converts 5 to [Zn(PTHIQDTC)(DMSO)] (6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!