The perceived slant of a stereoscopic surface is altered by the presence of a surrounding surface, a phenomenon termed stereo slant contrast. Previous studies have shown that a slanted surround causes a fronto-parallel surface to appear slanted in the opposite direction, an instance of "bidirectional" contrast. A few studies have examined slant contrast using slanted as opposed to fronto-parallel test surfaces, and these also have shown slant contrast. Here, we use a matching method to examine slant contrast over a wide range of combinations of surround and test slants, one aim being to determine whether stereo slant contrast transfers across opposite directions of test and surround slant. We also examine the effect of the test on the perceived slant of the surround. Test slant contrast was found to be bidirectional in virtually all test-surround combinations and transferred across opposite test and surround slants, with little or no decline in magnitude as the test-surround slant difference approached the limit. There was a weak bidirectional effect of the test slant on the perceived slant of the surround. We consider how our results might be explained by four mechanisms: (a) normalization of stereo slant to vertical; (b) divisive normalization of stereo slant channels in a manner analogous to the tilt illusion; (c) interactions between center and surround disparity-gradient detectors; and (d) uncertainty in slant estimation. We conclude that the third of these (interactions between center and surround disparity-gradient detectors) is the most likely cause of stereo slant contrast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059801 | PMC |
http://dx.doi.org/10.1167/jov.24.4.24 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.
Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.
View Article and Find Full Text PDFACS Photonics
October 2024
Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain.
Bound states in the continuum (BICs) in all-dielectric metasurfaces enhance light-matter interaction at the nanoscale due to their infinite factors and strong field confinement. Among a variety of phenomena already reported, their impact on chiral light has recently attracted great interest. Here we investigate the emergence of intrinsic and extrinsic optical chirality associated with the excitation of BICs in various metasurfaces made of Si nanorod dimers on a quartz substrate, comparing three cases: parallel nanorods (neutral) and shifted and slanted dimers, with/without index-matching superstrate.
View Article and Find Full Text PDFPhys Med Biol
September 2024
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, People's Republic of China.
J Vis
April 2024
McGill Vision Research, Department of Ophthalmology, Montréal General Hospital, Montréal, QC, Canada.
The perceived slant of a stereoscopic surface is altered by the presence of a surrounding surface, a phenomenon termed stereo slant contrast. Previous studies have shown that a slanted surround causes a fronto-parallel surface to appear slanted in the opposite direction, an instance of "bidirectional" contrast. A few studies have examined slant contrast using slanted as opposed to fronto-parallel test surfaces, and these also have shown slant contrast.
View Article and Find Full Text PDFPhys Med Biol
February 2024
Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!