Airborne particles (dust pollution) pose a significant threat to both human and plant populations. Plant leaves act as crucial biofilters, capturing significant amounts of air pollution; this characteristic offers a valuable tool to measure local pollution levels and assess individual plant species' ability to intercept and mitigate harmful dust particles. The present study was carried out to asses the effect of responses of various plant species to dust pollution near and around the marble mining site comprising residential site, highway area, and Central University of Rajasthan as control. The anticipated pollution index, air pollution tolerance index (APTI), dust absorption capacity, metal accumulation index (MAI), and biochemical factors were used to evaluate plant responses. Azadirachta indica A. Juss. demonstrated the highest (29.0) and Vachellia nilotica L. showed lowest (5.6) APTI, respectively. A. indica showed maximum MAI values in comparison to other plant species situated at residential site. Additionally, monitoring of particulate matter (PM) observed to highest at highway, followed by mining, residential, and control sites. Overall A. indica representing highest APTI and effective dust capturing capacity at all sites could serve as potential pollution sinks. V. nilotica, with its very low APTI, can be marked as biomonitoring tool for detecting dust pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33449-wDOI Listing

Publication Analysis

Top Keywords

dust pollution
16
plant species
12
pollution
9
marble mining
8
mining site
8
air pollution
8
residential site
8
dust
7
plant
7
evaluation effects
4

Similar Publications

The recycling of spent lithium-ion batteries has become a common concern of the whole society, with a large number of studies on recycling management and recycling technology, but there is relatively little study on the pollution release during the recycling process. Pollution will restrict the healthy development of the recycling industry, which makes relevant research very significant. This paper monitored and analyzed the battery recycling pretreatment process in a formal factory, and studied the pollution characteristics of particulate matter, heavy metals, and microplastics under different treatment stages.

View Article and Find Full Text PDF

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Land cover changes reduce dust aerosol concentrations in northern China (2000-2020).

Environ Res

January 2025

Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China. Electronic address:

Dust aerosols significantly impact climate, human health, and ecosystems, but how land cover (LC) changes influence dust concentrations remains unclear. Here, we applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to assess the effects of LC changes on dust aerosol concentrations from 2000 to 2020 in northern China. Based on LC data derived from multi-source satellite remote sensing data, we conducted two simulation scenarios: one incorporating actual annual LC changes and another assuming static LC since 2000.

View Article and Find Full Text PDF

Synergistic oxidative modification and covalent cross-linking for the construction of sesbania gum-based high efficiency dust suppression foam sols.

Int J Biol Macromol

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.

To effectively utilize sesbania gum in coal dust control and address the limitations of excessive viscosity and mediocre strength, oxidation treatment was used to improve its fluidity. Polyvinyl alcohol (PVA) and sodium trimetaphosphite (STMP) were used to enhance oxidized sesbania gum OSG, and crosslinking technology was used to improve its mechanical stability. This study developed a novel foam dust suppressant OSG-PVA/SDBS by response surface design, and the optimized dust suppressant material exhibited excellent adhesion and curing properties.

View Article and Find Full Text PDF

Cement dust is a primary contributor to air pollution and is responsible for causing numerous respiratory diseases. The impact of cement dust exposure on the respiratory health of residents is increasing owing to the demand for construction associated with urbanization. Long-term inhalation of cement dust leads to a reduction in lung function, alterations in airway structure, increased inhalation and exhalation resistance, and heightened work of breath.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!