DNA Barcoding in Species Delimitation: From Genetic Distances to Integrative Taxonomy.

Methods Mol Biol

Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.

Published: April 2024

AI Article Synopsis

  • * The text discusses the significance of DNA barcoding in taxonomic research, highlighting its benefits, limitations, and the use of DNA sequence pairwise distances.
  • * It also offers a detailed species delimitation protocol that guides researchers through the steps necessary for effective taxonomic decisions.

Article Abstract

Over the past two decades, DNA barcoding has become the most popular exploration approach in molecular taxonomy, whether for identification, discovery, delimitation, or description of species. The present contribution focuses on the utility of DNA barcoding for taxonomic research activities related to species delimitation, emphasizing the following aspects:(1) To what extent DNA barcoding can be a valuable ally for fundamental taxonomic research, (2) its methodological and theoretical limitations, (3) the conceptual background and practical use of pairwise distances between DNA barcode sequences in taxonomy, and (4) the different ways in which DNA barcoding can be combined with complementary means of investigation within a broader integrative framework. In this chapter, we recall and discuss the key conceptual advances that have led to the so-called renaissance of taxonomy, elaborate a detailed glossary for the terms specific to this discipline (see Glossary in Chap. 35 ), and propose a newly designed step-by-step species delimitation protocol starting from DNA barcode data that includes steps from the preliminary elaboration of an optimal sampling strategy to the final decision-making process which potentially leads to nomenclatural changes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3581-0_4DOI Listing

Publication Analysis

Top Keywords

dna barcoding
20
species delimitation
12
dna barcode
8
dna
7
species
4
barcoding species
4
delimitation
4
delimitation genetic
4
genetic distances
4
distances integrative
4

Similar Publications

Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.

View Article and Find Full Text PDF

Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.

View Article and Find Full Text PDF

During macrofungal surveys in 2019-2024, several specimens belonging to the family Psathyrellaceae were collected from the bed of the Indus River, Punjab, Pakistan. Phylogenetic analyses, based on ITS, LSU, and tef-1α sequences and morpho-anatomical study, confirmed the novelty and placement of three taxa in the genus . They are described as , , and .

View Article and Find Full Text PDF

Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea.

Curr Microbiol

January 2025

Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.

View Article and Find Full Text PDF

Altogether three species of Empidinae are described from San Rossore National Park, Italy: () Barták sp. nov., Barták sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!