Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the pursuit of precise diagnostics for measuring negative ion density in a helicon plasma source (HPS), a new approach utilizing a radio frequency (RF) broadband transformer-based Langmuir probe is developed specifically for laser photo-detachment (LPD) analysis. This inductively coupled LPD technique is useful for high power RF systems in which capacitive RF noise is in the same scale as the pulsed photo-detachment signal. The signal acquired by this transformer-based probe is compared against the conventional Langmuir probe-based LPD technique, revealing a remarkable enhancement in signal fidelity through an improved signal-to-noise ratio (SNR) achieved by the RF broadband transformer methodology. In addition, the localized hydrogen negative ion density measurements obtained through this probe are harmoniously aligned with the line-averaged negative ion density derived from the cavity ringdown spectroscopy (CRDS) technique. These concurrence measurements highlight the RF broadband transformer-based approach's accuracy in capturing localized negative ion density during helicon mode operation in an HPS setup. Furthermore, the correlation of negative ion density values with RF input exhibits a consistent trend in tandem with background plasma density. Notably, both CRDS and LPD measurements ascertain negative ion densities ranging from ∼5 to 6×1016 m-3 under an RF power of 500-700 W and a pressure of 8 × 10-3 mbar, all under the influence of a 55 G axial magnetic field. These specific parameters represent the optimal operational configuration for effective negative ion production with the present experimental HPS setup. Due to its better SNR, the RF broadband transformer-based Langmuir probe emerges as a useful tool for LPD diagnostics, particularly in the presence of pervasive RF noise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0186429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!