AI Article Synopsis

Article Abstract

Quantum sensors leverage matter's quantum properties to enable measurements with unprecedented spatial and spectral resolution. Among these sensors, those utilizing nitrogen-vacancy (NV) centers in diamond offer the distinct advantage of operating at room temperature. Nevertheless, signals received from NV centers are often complex, making interpretation challenging. This is especially relevant in low magnetic field scenarios, where standard approximations for modeling the system fail. Additionally, NV signals feature a prominent noise component. In this Letter, we present a signal-to-image deep learning model capable of automatically inferring the number of nuclear spins surrounding a NV sensor and the hyperfine couplings between the sensor and the nuclear spins. Our model is trained to operate effectively across various magnetic field scenarios, requires no prior knowledge of the involved nuclei, and is designed to handle noisy signals, leading to fast characterization of nuclear environments in real experimental conditions. With detailed numerical simulations, we test the performance of our model in scenarios involving varying numbers of nuclei, achieving an average error of less than 2 kHz in the estimated hyperfine constants.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.150801DOI Listing

Publication Analysis

Top Keywords

nuclear spins
12
magnetic field
8
field scenarios
8
automatic detection
4
nuclear
4
detection nuclear
4
spins arbitrary
4
arbitrary magnetic
4
magnetic fields
4
fields signal-to-image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!