Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Light-matter interaction is crucial to both understanding fundamental phenomena and developing versatile applications. Strong coupling, robustness, and controllability are the three most important aspects in realizing light-matter interactions. Topological and non-Hermitian photonics have provided frameworks for robustness and control flexibility, respectively. How to engineer the properties of the edge state such as photonic density of state by using non-Hermiticity while ensuring topological protection has not been fully studied. Here we construct a parity-time-symmetric dimerized photonic lattice and probe the spontaneous PT-symmetry breaking of the edge states by utilizing the strong coupling between the photonic mode and a spin ensemble. Our Letter presents an accurate and almost noninvasive approach for investigating non-Hermitian topological states, while also offering methodologies for the implementation and manipulation of topological light-matter interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.156901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!