Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlike bosons and fermions, quasiparticles in two-dimensional quantum systems, known as anyons, exhibit statistical exchange phases that range between 0 and π. In fractional quantum Hall states, these anyons, possessing a fraction of the electron charge, traverse along chiral edge channels. This movement facilitates the creation of anyon colliders, where coupling different edge channels through a quantum point contact enables the observation of two-particle interference effects. Such configurations are instrumental in deducing the anyonic exchange phase via current cross-correlations. Prior theoretical models represented dilute anyon beams as discrete steps in the boson fields. However, our study reveals that incorporating the finite width of the soliton shape is crucial for accurately interpreting recent experiments, especially for collider experiments involving anyons with exchange phases θ>π/2, where prior theories fall short.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.156501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!