We report the magnetic properties of a cobalt oxalate metal-organic framework featuring the hyperoctagon lattice. Our thermodynamic measurements reveal the J_{eff}=1/2 state of the high-spin Co^{2+} (3d^{7}) ion and the two successive magnetic transitions at zero field with two-stage entropy release. ^{13}C-NMR measurements reveal the absence of an internal magnetic field in the intermediate temperature phase. Multiple field-induced phases are observed before full saturation at around 40 T. We argue the unique cobalt oxalate network gives rise to the Kitaev interaction and/or a bond frustration effect, providing an unconventional platform for frustrated magnetism on the hyperoctagon lattice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.156702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!