Numerical simulations of head-related transfer functions (HRTFs) conventionally assume a rigid boundary condition for the pinna. The human pinna, however, is an elastic deformable body that can vibrate due to incident acoustic waves. This work investigates how sound-induced vibrations of the pinna can affect simulated HRTF magnitudes. The work will motivate the research question by measuring the sound-induced vibrational patterns of an artificial pinna with a high-speed holographic interferometric system. Then, finite element simulations are used to determine HRTFs for a tabletop model of the B&K 5128 head and torso simulator for a number of directions. Two scenarios are explored: one where the pinna is modeled as perfectly rigid, and another where the pinna is modeled as linear elastic with material properties close to that of auricular cartilage. The findings suggest that pinna vibrations have negligible effects on HRTF magnitudes up to 5 kHz. The same conclusion, albeit with less certainty, is drawn for higher frequencies. Finally, the importance of the elastic domain's material properties is emphasized and possible implications for validation studies on dummy heads 1as well as the limitations of the present work are discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0025773 | DOI Listing |
bioRxiv
December 2024
Caruso Department of Otolaryngology - Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Cochlear outer hair cells (OHCs) transduce sound-induced vibrations of their stereociliary bundles into receptor potentials that drive changes in cell length. While fast, phasic OHC length changes are thought to underlie an amplification process required for sensitive hearing, OHCs also exhibit large tonic length changes. The origins and functional significance of this tonic motility are unclear.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
September 2024
Department of Biology, Indiana University - Indianapolis, Indianapolis, Indiana, USA.
Auditory hair cells, which convert sound-induced vibrations in the inner ear into neural signals, depend on multiple actin populations for normal function. Stereocilia are mechanosensory protrusions formed around a core of linear, crosslinked F-actin. They are anchored in the cuticular plate, which predominantly consists of randomly oriented actin filaments.
View Article and Find Full Text PDFSci Rep
July 2024
Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Losing either type of cochlear sensory hair cells leads to hearing impairment. Inner hair cells act as primary mechanoelectrical transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established inner ear damage models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice.
View Article and Find Full Text PDFJ Acoust Soc Am
April 2024
Reality Labs Research at Meta, 8747 Willows Road, Redmond, Washington 98052, USA.
Numerical simulations of head-related transfer functions (HRTFs) conventionally assume a rigid boundary condition for the pinna. The human pinna, however, is an elastic deformable body that can vibrate due to incident acoustic waves. This work investigates how sound-induced vibrations of the pinna can affect simulated HRTF magnitudes.
View Article and Find Full Text PDFHearing impairment arises from the loss of either type of cochlear sensory hair cells. Inner hair cells act as primary sound transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!