Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0025766DOI Listing

Publication Analysis

Top Keywords

sediment flux
16
flow conditions
12
flux measurements
8
scattering processes
8
velocity concentration
8
flux estimates
8
flux
7
sediment
6
examination point-particle
4
point-particle lagrangian
4

Similar Publications

Rapid warming in polar regions is causing large changes to ecosystems, including altering environmentally available mercury (Hg). Although subarctic freshwater systems have simple vertebrate communities, Hg in amphibians remains unexplored. We measured total Hg (THg) in wetland sediments and methylmercury (MeHg) in multiple life-stages (eggs to adults) of wood frogs (Rana sylvatica) and larval boreal chorus frogs (Pseudacris maculata) from up to 25 wetlands near Churchill, Manitoba (Canada), during the summers of 2018-2019.

View Article and Find Full Text PDF

Augmented carbon utilization and ammonia assimilation in heterotrophic microorganism under magnetic field stimulation.

Environ Res

January 2025

School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China. Electronic address:

Ammonia assimilation is crucial in microbial nitrogen metabolism, and researching the impact of magnetic field (MF) on heterotrophic ammonia assimilation (HAA) contributes to improving nitrogen utilization and environmental remediation. This study systematically investigated the profound effects of MF stimulation on carbon and ammonia assimilation mechanisms in heterotrophic microorganisms. The dynamic responses of microbial carbon source metabolic efficiency and nitrogen source assimilation rates were quantitatively analyzed by designing a multidimensional stimulation environment of different nutrient levels (C/N 20, 25, 30) and MF intensities (0, 1, 20 mT).

View Article and Find Full Text PDF

Freshwater Salinization Mitigated NO Emissions in Submerged Plant-Covered Systems: Insights from Attached Biofilms.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Submerged plants (SMPs) play a critical role in improving water quality and reducing NO greenhouse gas emissions. However, freshwater salinization represents a major environmental challenge in aquatic systems. To investigate the impact of salinization on NO emissions, this study conducted indoor mesocosm experiments simulating SMP and nonsubmerged plant (Non_SMP) areas in freshwater lakes.

View Article and Find Full Text PDF

The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.

View Article and Find Full Text PDF

In-channel sediment mining significantly disrupts reach-scale sediment connectivity and channel geometry, causing immediate and intense geomorphological responses. River systems perturbed by anthropogenic stress, like sand and gravel mining, tend to respond within a shorter timescale, making the study of feedback mechanisms important. 'Sensitive' rivers display dramatic change via a positive feedback mechanism, exacerbating the change in the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!