When the eyes view separate and incompatible images, the brain suppresses one image and promotes the other into visual awareness. Periods of interocular suppression can be prolonged during continuous flash suppression (CFS) - when one eye views a static 'target' while the other views a complex dynamic stimulus. Measuring the time needed for a suppressed image to break CFS (bCFS) has been widely used to investigate unconscious processing, and the results have generated controversy regarding the scope of visual processing without awareness. Here, we address this controversy with a new 'CFS tracking' paradigm (tCFS) in which the suppressed monocular target steadily increases in contrast until breaking into awareness (as in bCFS) after which it decreases until it again disappears (reCFS), with this cycle continuing for many reversals. Unlike bCFS, tCFS provides a measure of suppression depth by quantifying the difference between breakthrough and suppression thresholds. tCFS confirms that (i) breakthrough thresholds indeed differ across target types (e.g. faces vs gratings, as bCFS has shown) - but (ii) suppression depth does not vary across target types. Once the breakthrough contrast is reached for a given stimulus, all stimuli require a strikingly uniform reduction in contrast to reach the corresponding suppression threshold. This uniform suppression depth points to a single mechanism of CFS suppression, one that likely occurs early in visual processing because suppression depth was not modulated by target salience or complexity. More fundamentally, it shows that variations in bCFS thresholds alone are insufficient for inferring whether the barrier to achieving awareness exerted by interocular suppression is weaker for some categories of visual stimuli compared to others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057872 | PMC |
http://dx.doi.org/10.7554/eLife.91019 | DOI Listing |
Adv Sci (Weinh)
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.
Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.
View Article and Find Full Text PDFBackground: Targeting glutamine metabolism has emerged as a promising strategy in cancer therapy. However, several barriers, such as anti-tumor efficacy, drug toxicity, and safety, remain to be overcome to achieve clinical utility. Prior preclinical studies had generated encouraging data showing promises of cancer metabolism targeting drugs, although most were performed on immune-deficient murine models.
View Article and Find Full Text PDFOncol Res
January 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China. Electronic address:
Tartary buckwheat (Fagopyrum tataricum), a functional grain known for its medicinal and nutritional properties, has garnered significant attention due to its high flavonoid content and unique health benefits. Heat stress during the flowering stage can lead to sterility in Tartary buckwheat, resulting in reduced yields. This study investigates the effects of a treatment (30/27 °C for 7 days) on flower development, fertility, stress physiology, and gene expression in Tartary buckwheat, while also validating the efficacy of hormone treatments in alleviating the negative effects of heat stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!