In the selective oxidation of HS, the catalytic activity over N-doped carbon-based catalysts is significantly influenced by the accessibility of active sites and the mass transfer rates of reactant molecules (e.g., HS and O) as well as generated sulfur monomers. Therefore, it is crucial for enhancing the initial performance via the controlled synthesis of carbon-based catalysts with highly exposed active sites and unique porous structures. Herein, we reported on an efficient strategy to synthesize nanosized N-doped carbon particles with hierarchical porous structures by directly pyrolyzing an oversaturated NaCl-encapsulated ZIF-8 precursor mixture. The introduction of NaCl not only serves as a pollution-free template to promote the formation of graphitic carbon layers but also acts as an intercalating agent to guide the derivation of hierarchical porous structures, as well as enhances the amount of active nitrogen species in the catalysts. As a result, the as-prepared H-NC800 catalyst shows excellent HS selective oxidation performance (sulfur formation rate is 794 g·kg·h), good stability (>80 h), and antiwater vapor properties. The characterization results and DFT calculations indicate the crucial role of pyridinic N in the adsorbing and activating reactant molecules (HS, O). Furthermore, nanoscale N-doped carbon particles accelerated the rapid transport of generated sulfur monomers under a hierarchical porous structure. This investigation introduces a distinctive strategy for synthesizing ZIF-8-derived N-doped carbon nanosized with a hierarchical porous structure, while its efficient and stable HS selective oxidation performance highlights significant potential for practical implementation in the industrial desulfurization process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c02236 | DOI Listing |
Small
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Fribourg: Universite de Fribourg, Department of Chemistry, Chemin du Musée 9, 1700, Fribourg, SWITZERLAND.
The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).
View Article and Find Full Text PDFEnviron Res
January 2025
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:
Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.
View Article and Find Full Text PDFChemSusChem
December 2024
National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!