Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing.

Angew Chem Int Ed Engl

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.

Published: July 2024

The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)]-based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)] ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m K, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202405357DOI Listing

Publication Analysis

Top Keywords

hydrogel electrolytes
8
mechanical strength
8
betaine zwitterions
8
tecs
6
robust efficient
4
efficient recoverable
4
recoverable thermocells
4
thermocells zwitterion-boosted
4
zwitterion-boosted hydrogel
4
electrolytes energy-autonomous
4

Similar Publications

Electro- and Photo- Dual Responsive Chromatic Devices for High-Contrast Dimmers.

Adv Mater

December 2024

Institute of Frontier & Interdisciplinary Science, Shandong University, Qingdao, 266237, China.

Electrochromism stands out as a highly promising technology for applications including variable optical attenuators, optical switches, transparent displays, and dynamic windows. The pursuit of high-contrast tunability in electrochromic devices remains a challenging goal. Here, the first photochromic hydrogel electrolyte is reported for electro- and photo-dual responsive chromatic devices that yield a high transmittance contrast at 633 nm (ΔT = 83.

View Article and Find Full Text PDF

In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.

View Article and Find Full Text PDF

Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.

View Article and Find Full Text PDF

Dual-compartment-gate organic transistors for monitoring biogenic amines from food.

Biosens Bioelectron

December 2024

Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.

According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!