A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma. | LitMetric

AI Article Synopsis

  • Developed a 3D Prompt-nnUnet module to enhance autosegmentation of high-risk clinical areas in endometrial carcinoma brachytherapy.
  • Utilized a large dataset of CT scans from 321 patients for HR CTV and 125 patients for OAR segmentation, with rigorous validation methods including cross-validation and multiple performance metrics.
  • Results showed the Prompt-nnUnet, especially using Label-Prompt, achieved high accuracy and speed in segmentation, potentially saving significant time for clinicians compared to traditional methods.

Article Abstract

Purpose: To create and evaluate a three-dimensional (3D) Prompt-nnUnet module that utilizes the prompts-based model combined with 3D nnUnet for producing the rapid and consistent autosegmentation of high-risk clinical target volume (HR CTV) and organ at risk (OAR) in high-dose-rate brachytherapy (HDR BT) for patients with postoperative endometrial carcinoma (EC).

Methods And Materials: On two experimental batches, a total of 321 computed tomography (CT) scans were obtained for HR CTV segmentation from 321 patients with EC, and 125 CT scans for OARs segmentation from 125 patients. The numbers of training/validation/test were 257/32/32 and 87/13/25 for HR CTV and OARs respectively. A novel comparison of the deep learning neural network 3D Prompt-nnUnet and 3D nnUnet was applied for HR CTV and OARs segmentation. Three-fold cross validation and several quantitative metrics were employed, including Dice similarity coefficient (DSC), Hausdorff distance (HD), 95th percentile of Hausdorff distance (HD95%), and intersection over union (IoU).

Results: The Prompt-nnUnet included two forms of parameters Predict-Prompt (PP) and Label-Prompt (LP), with the LP performing most similarly to the experienced radiation oncologist and outperforming the less experienced ones. During the testing phase, the mean DSC values for the LP were 0.96 ± 0.02, 0.91 ± 0.02, and 0.83 ± 0.07 for HR CTV, rectum and urethra, respectively. The mean HD values (mm) were 2.73 ± 0.95, 8.18 ± 4.84, and 2.11 ± 0.50, respectively. The mean HD95% values (mm) were 1.66 ± 1.11, 3.07 ± 0.94, and 1.35 ± 0.55, respectively. The mean IoUs were 0.92 ± 0.04, 0.84 ± 0.03, and 0.71 ± 0.09, respectively. A delineation time < 2.35 s per structure in the new model was observed, which was available to save clinician time.

Conclusion: The Prompt-nnUnet architecture, particularly the LP, was highly consistent with ground truth (GT) in HR CTV or OAR autosegmentation, reducing interobserver variability and shortening treatment time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244685PMC
http://dx.doi.org/10.1002/acm2.14371DOI Listing

Publication Analysis

Top Keywords

postoperative endometrial
8
endometrial carcinoma
8
oars segmentation
8
ctv oars
8
hausdorff distance
8
ctv
5
deep learning-based
4
prompt-nnunet
4
learning-based prompt-nnunet
4
prompt-nnunet model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!