Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: This study focuses on the development of a neural network model to predict perceived sleep quality using data from wearable devices. We collected various physiological metrics from 18 participants over four weeks, including heart rate, physical activity, and both device-measured and self-reported sleep quality.
Objectives: The primary objective was to correlate wearable device data with subjective sleep quality perceptions.
Methods: Our approach used data processing, feature engineering, and optimizing a Multi-Layer Perceptron classifier.
Results: Despite comprehensive data analysis and model experimentation, the predictive accuracy for perceived sleep quality was moderate (59%), highlighting the complexities in accurately quantifying subjective sleep experiences through wearable data. Applying a tolerance of 1 grade (on a scale from 1-5), increased accuracy to 92%.
Discussion: More in-depth analysis is required to fully comprehend how wearables and artificial intelligence might assist in understanding sleep behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI240041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!