Advancing neuroscience through real-time processing of big data: Transition from open-loop to closed-loop paradigms.

Zool Res

Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.

Published: May 2024

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188594PMC
http://dx.doi.org/10.24272/j.issn.2095-8137.2024.099DOI Listing

Publication Analysis

Top Keywords

advancing neuroscience
4
neuroscience real-time
4
real-time processing
4
processing big
4
big data
4
data transition
4
transition open-loop
4
open-loop closed-loop
4
closed-loop paradigms
4
advancing
1

Similar Publications

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing central nervous system disease most commonly associated with aquaporin-4 antibodies (AQP4-Ab) and Myelin oligodendrocyte glycoprotein (MOG) antibodies. These demyelinating disorders influence cortical excitability, which has been studied using advanced imaging techniques and transcranial magnetic stimulation (TMS) in our study.

Methods: This is a prospective study of 30 subjects.

View Article and Find Full Text PDF

Point of view: Challenges in implementation of new immunotherapies for Alzheimer's disease.

J Prev Alzheimers Dis

January 2025

Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, 171 64 Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Stockholm, Sweden.

The advancement of disease-modifying treatments (DMTs) for Alzheimer's disease (AD), along with the approval of three amyloid-targeting therapies in the US and several other countries, represents a significant development in the treatment landscape, offering new hope for addressing this once untreatable chronic progressive disease. However, significant challenges persist that could impede the successful integration of this class of drugs into clinical practice. These challenges include determining patient eligibility, appropriate use of diagnostic tools and genetic testing in patient care pathways, effective detection and monitoring of side effects, and improving the healthcare system's readiness by engaging both primary care and dementia specialists.

View Article and Find Full Text PDF

Analysis of key lncRNA related to Parkinson's disease based on gene co-expression weight networks.

Neurosciences (Riyadh)

January 2025

From the School of Clinical Medicine (Liang, Luo, Jia), Shandong Second Medical University, Weifang, from the Department of Neurology (Liang, Zhao, Lin, Li, Luo, Jia) , Beijing Shijingshan Hospital, Shijingshan Teaching Hospital of Capital Medical University, Beijing, and from the Department of Neurology (Li), Affiliated Hospital of Weifang Medical University, Weifang, China.

Objectives: To identify a key Long chain non-coding RNAs (lncRNAs) related to PD and provide a new perspective on the role of LncRNAs in Parkinson's disease (PD) pathophysiology.

Methods: Our study involved analyzing gene chips from the substantia nigra and white blood cells, both normal and PD-inclusive, in the Gene Expression Omnibus (GEO) database, utilizing a weighted gene co-expression network analysis (WGCNA). The technique of WGCNA facilitated the examination of differentially expressed genes (DEGs) in the substantia nigra and the white blood cells of individuals with PD.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

The paradox of the self-studying brain.

Phys Life Rev

January 2025

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; VERSES AI Research Lab, Los Angeles, CA, 90016, USA.

The paradox of a brain trying to study itself presents a conundrum, raising questions about self-reference, consciousness, psychiatric disorders, and the boundaries of scientific inquiry. By which means can this complex organ shift the focus of study towards itself? We aim at unpacking the intricacies of this paradox. Historically, this question has been raised by philosophers under different frameworks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!