Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the changes in redox state and protein expression in selected parts of the rat brain induced by a 4 week administration of morphine (10 mg/kg/day). We found a significant reduction in lipid peroxidation that mostly persisted for 1 week after morphine withdrawal. Morphine treatment led to a significant increase in complex II in the cerebral cortex (Crt), which was accompanied by increased protein carbonylation, in contrast to the other brain regions studied. Glutathione levels were altered differently in the different brain regions after morphine treatment. Using label-free quantitative proteomic analysis, we found some specific changes in protein expression profiles in the Crt, hippocampus, striatum, and cerebellum on the day after morphine withdrawal and 1 week later. A common feature was the upregulation of anti-apoptotic proteins and dysregulation of the extracellular matrix. Our results indicate that the tested protocol of morphine administration has no significant toxic effect on the rat brain. On the contrary, it led to a decrease in lipid peroxidation and activation of anti-apoptotic proteins. Furthermore, our data suggest that long-term treatment with morphine acts specifically on different brain regions and that a 1 week drug withdrawal is not sufficient to normalize cellular redox state and protein levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11049758 | PMC |
http://dx.doi.org/10.1515/biol-2022-0858 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!