Tree species occurring in Amazonian wetland forests consistently show broader range sizes and niche breadths than trees in upland forests.

Ecol Evol

Departamento de Ecologia, Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil.

Published: April 2024

Generally, species with broad niches also show large range sizes. We investigated the relationship between hydrological niche breadth and geographic range size for Amazonian tree species seeking to understand the role of habitat specialization to Amazonian wetlands and upland forests on the current distribution of tree species. We obtained 571,092 valid occurrence points from GBIF and SpeciesLink to estimate the range size and the niche breadth of 76% of all known Amazonian tree species (5150 tree species). Hydrological niche breadth was measured on different unidimensional axes defined by (1) total annual precipitation; (2) precipitation seasonality; (3) actual evapotranspiration; and (4) water table depth. Geographic range sizes were estimated using alpha-hull adjustments. General linear models were used to relate niche breadth to range size while contrasting tree species occurring and not occurring in wetlands. The hydrological niche breadth of Amazonian tree species varied mostly along the water table depth axis. The average range size for an Amazonian tree species was 751,000 km (median of 154,000 km and standard deviation of 1,550,000 km). Niche breadth-range size relationships for Amazonian tree species were positive for all models, and the explanatory power of the models improved when including whether a species occurred in wetlands or in terrestrial uplands. Wetland species had steeper positive slopes for the niche breadth-range size relationship, and consistently larger range sizes for a given niche breadth. Amazonian tree species varied strongly in hydrological niche breadth and range size, but most species had narrow niche breadths and range sizes. Our results suggest that the South American riverscape may have been acting as a corridor for species dispersal in the Neotropical lowlands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045914PMC
http://dx.doi.org/10.1002/ece3.11230DOI Listing

Publication Analysis

Top Keywords

tree species
40
niche breadth
28
amazonian tree
24
range sizes
20
range size
20
hydrological niche
16
species
14
niche
11
tree
10
range
10

Similar Publications

Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis.

Glob Chang Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.

Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.

View Article and Find Full Text PDF

Population variation in fatty acid composition and response to climatic factors in Malania oleifera Chun et S.K. Lee.

BMC Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, 100093, China.

Malania oleifera Chun et S.K. Lee is a woody oil tree species and is rich in nervonic acid, which is associated with brain development.

View Article and Find Full Text PDF

Polyphenols as a strategy for improving male reproductive system.

Mol Biol Rep

January 2025

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.

Reproduction in males is one of the complicated processes that is mediated by many environmental factors, as well as by diet (e.g. supplements, nutritional value).

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.

View Article and Find Full Text PDF

A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!