Understanding the response of microbial communities and their potential functions is essential for sustainability of agroecosystems under long-term continuous cropping. However, limited research has focused on investigating the interaction between soil physicochemical factors and microbial community dynamics in agroecosystems under long-term continuous cropping. This study probed into the physicochemical properties, metabolites, and microbial diversity of tobacco rhizosphere soils cropped continuously for 0, 5, and 20 years. The relative abundance of bacterial genera associated with nutrient cycling (e.g., ) increased while potential plant pathogenic fungi and beneficial microorganisms showed synergistic increases with the duration of continuous cropping. Variations in soil pH, alkeline nitrogen (AN) content, and soil organic carbon (SOC) content drove the shifts in soil microbial composition. Metabolites such as palmitic acid, 3-hydroxypropionic acid, stearic acid, and hippuric acid may play a key role in soil acidification. Those results enhance our ability to predict shifts in soil microbial community structure associated with anthropogenic continuous cropping, which can have long-term implications for crop production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045989 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1374550 | DOI Listing |
Front Genome Ed
February 2025
Genetic Resource Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico.
Wheat is cultivated across diverse global environments, and its productivity is significantly impacted by various biotic stresses, most importantly but not limited to rust diseases, Fusarium head blight, wheat blast, and powdery mildew. The genetic diversity of modern cultivars has been eroded by domestication and selection, increasing their vulnerability to biotic stress due to uniformity. The rapid spread of new highly virulent and aggressive pathogen strains has exacerbated this situation.
View Article and Find Full Text PDFMicrobiol Res
March 2025
College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shanxi Engineering Research Center for Viti-Viniculture, Yangling, Shanxi 712100, China. Electronic address:
The metabolism of the crop rhizosphere affects microflora diversity and nutrient cycling. However, understanding rhizosphere metabolism in suitable crops within arid desert environments and its impact on microflora interactions remains limited. Through metagenomic and non-targeted metabolomic sequencing of rhizosphere soils from one uncultivated land and four vineyards with cropping years of 5, 10, 15 and 20 years, the critical importance of rhizosphere metabolites in maintaining bacterial and fungal diversity was elucidated.
View Article and Find Full Text PDFPLoS One
March 2025
Center of Data Science, Queensland University of Technology, Brisbane, Queensland, Australia.
Climate change impacts require us to reexamine crop growth and yield under increasing temperatures and continuing yearly climate variability. Agronomic and agro-meteorological variables were concorded for a large number of plantings of green bean (Phaseolus vulgaris L.) in three growing seasons over several years from semi-tropical Queensland.
View Article and Find Full Text PDFHortic Res
March 2025
Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
Cassava ( Crantz) is a staple food of 800 million people in the tropical and subtropical regions of the world. Its industrial utilization for bioethanol, animal feed, and starch are still continuously expanding. It was not until the 1970s that significant scientific efforts were undertaken to improve cassava, despite its considerable economic and social significance.
View Article and Find Full Text PDFGM Crops Food
December 2025
Department of Agricultural Economics, University of Saskatchewan, Saskatoon, Canada.
Genetically modified crop adoption in Canada has been the key driver in removing tillage as the lead form of weed control, due to increased weed control efficiency. Land use has transitioned from the use of summerfallow to continuous cropping, predominantly involving zero or minimum tillage practices. Prairie crop rotations have diversified away from mainly cereals to include three-year rotations of cereals, pulses, and oilseeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!