This paper aims to provide practitioners of causal mediation analysis with a better understanding of estimation options. We take as inputs two familiar strategies (weighting and model-based prediction) and a simple way of combining them (weighted models), and show how a range of estimators can be generated, with different modeling requirements and robustness properties. The primary goal is to help build intuitive appreciation for robust estimation that is conducive to sound practice. We do this by visualizing the target estimand and the estimation strategies. A second goal is to provide a "menu" of estimators that practitioners can choose from for the estimation of marginal natural (in)direct effects. The estimators generated from this exercise include some that coincide or are similar to existing estimators and others that have not previously appeared in the literature. We note several different ways to estimate the weights for cross-world weighting based on three expressions of the weighting function, including one that is novel; and show how to check the resulting covariate and mediator balance. We use a random continuous weights bootstrap to obtain confidence intervals, and also derive general asymptotic variance formulas for the estimators. The estimators are illustrated using data from an adolescent alcohol use prevention study. R-code is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052605PMC
http://dx.doi.org/10.1214/22-SS140DOI Listing

Publication Analysis

Top Keywords

causal mediation
8
mediation analysis
8
estimation marginal
8
marginal natural
8
natural indirect
8
indirect effects
8
estimators generated
8
estimators
6
estimation
5
analysis simple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!