Acoustic emission from the compounds [Fe(HB(tz))] and [Fe(Htrz)(trz)]BF was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044199PMC
http://dx.doi.org/10.1039/d4tc00495gDOI Listing

Publication Analysis

Top Keywords

acoustic emission
12
spin transition
8
acoustic
4
acoustic emissions
4
spin
4
emissions spin
4
spin crossover
4
crossover complexes
4
complexes acoustic
4
emission compounds
4

Similar Publications

In this paper, we introduce FUSION-ANN, a novel artificial neural network (ANN) designed for acoustic emission (AE) signal classification. FUSION-ANN comprises four distinct ANN branches, each housing an independent multilayer perceptron. We extract denoised features of speech recognition such as linear predictive coding, Mel-frequency cepstral coefficient, and gammatone cepstral coefficient to represent AE signals.

View Article and Find Full Text PDF

Review of advanced sensor system applications in grinding operations.

J Adv Res

January 2025

Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania. Electronic address:

Background: Today, in a wide variety of industries, grinding operations are an extremely important finishing process for obtaining precise dimensions and meeting strict requirements for roughness and shape accuracy. However, the constant wear of abrasive tools during grinding negatively affects the dimensional and surface conditions of the workpiece. Therefore, effective monitoring of the wear process during grinding operations helps to predict tool life, plan maintenance and ensure consistent product quality.

View Article and Find Full Text PDF

There is very limited research in the literature investigating the way acoustic emission signals change when polymer materials are undergoing different fracture modes. This study investigates the capability of acoustic emission to recognize the fracture mode through acoustic emission parameter analysis, and can be considered the first-ever study which examines the impact of different loading conditions, i.e.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

A primer on low-carbon design in architectural acoustics using a case study of residential floorsa).

JASA Express Lett

January 2025

Department of Architectural Engineering, The Pennsylvania State University, 104 Engineering Unit A, University Park, Pennsylvania 16802,

Designers are increasingly tasked to reduce the carbon footprint of buildings. While core disciplines (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!