Sensing of both temperature and strain is crucial for various diagnostic and therapeutic purposes. Here, we present a novel hydrogel-based electronic skin (e-skin) capable of dual-mode sensing of temperature and strain. The thermocouple ion selected for this study is the iodine/triiodide (I/I) redox couple, which is a common component in everyday disinfectants. By leveraging the thermoelectric conversion in conjunction with the inherent piezoresistive effect of a gel electrolyte, self-powered sensing is achieved by utilizing the temperature difference between the human body and the external environment. The composite hydrogels synthesized from polyvinyl alcohol (PVA) monomers using a simple freeze‒thaw method exhibit remarkable flexibility, extensibility, and adaptability to human tissue. The incorporation of zwitterions further augments the resistance of the hydrogel to dehydration and low temperatures, allowing maintenance of more than 90% of its weight after 48 h in the air. Given its robust thermal current response, the hydrogel was encapsulated and then integrated onto various areas of the human body, including the cheeks, fingers, and elbows. Furthermore, the detection of the head-down state and the monitoring of foot movements demonstrate the promising application of the hydrogel in supervising the neck posture of sedentary office workers and the activity status. The successful demonstration of self-powered on-body temperature and strain sensing opens up new possibilities for wearable intelligent electronics and robotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055913 | PMC |
http://dx.doi.org/10.1038/s41378-024-00693-6 | DOI Listing |
Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark.
The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, USA.
Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China.
HOP-graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP-graphene, utilizing molecular dynamics simulations. The results revealed that Young's modulus of HOP-graphene in the armchair direction is 21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!