Herein, this study was compiled to investigate a suitable solution for the fabrication and development of the multifunctional defense tent from previously reported research. The military always needs to protect their soldiers and equipment from detection. The advancement of infrared detection technology emphasizes the significance of infrared camouflage materials, reducing thermal emissions for various applications. Objects emit infrared radiation detectable by devices, making military targets easily identifiable. Infrared camouflage mitigates detection by lowering an object's infrared radiation, achieved by methods such as reducing surface temperature, which is crucial in designing military tents with infrared (IR) camouflage, considering water repellency and antibacterial features. Water repellency, as well as antimicrobial properties, in army tents is also important as they have to survive in different situations. All these problems should be addressed with the required properties; therefore, the authors try to introduce a new method from which multifunctional tents can be produced through economical, multifunctional, and sustainable materials that have IR protection, water repellency, ultraviolet (UV) protection, air filtration and permeability, and antimicrobial properties. There is still no tent that performs multiple functions at a time, even those functions that do not correlate with each other such as water repellency, IR protection, antimicrobial, and air permeability. So, a multifunctional tent could be the solution to all these problems having all the properties discussed above. In this study based on the literature review, authors concluded a method for the required tent for canvas fabric coated with zinc sulfide (ZnS), graphene oxide (GO), and zinc oxide (ZnO), or these materials should be incorporated in fiber formation because fiber composition has more impact. These multifunctional tents will be very beneficial due to their multifunctions like weather resistance, durability, and long life. These would help the army in their missions by concealing their soldiers and equipment from detection by cameras and providing filtered air inside the tent in case of gases or explosions. The proposed method will help to fulfill the stated and implied needs of customers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044260 | PMC |
http://dx.doi.org/10.1021/acsomega.3c09249 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
Bio-waxes derived from natural species are beneficial for preparing non-wetting surfaces. Herein, the wetting properties of recrystallized wax coatings extracted from three naturally occurring superhydrophobic species-, Lotus leaves, Bauhinia leaves, and Periwinkle flowers, are reported as a function of recrystallization time, temperature, pH of water, and impact pressure. Lotus wax coatings showcased nanorods similar to that of Lotus leaves, while Periwinkle and Bauhinia waxes could not replicate micro-/nanofeatures from their respective natural species.
View Article and Find Full Text PDFAdv Mater
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Photonic pigments, especially those based on naturally-derived building blocks like cellulose nanocrystals (CNCs), are emerging as a promising sustainable alternative to absorption-based colorants. However, the proposed manufacturing methods for CNC pigments, via either grinding films or emulsion-based production, usually require several processing steps. This limits their commercialization by increasing the costs, timescales, and environmental impacts of production.
View Article and Find Full Text PDFACS Nano
January 2025
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.
The excessive use of fluoride in fibrous membranes poses significant bioaccumulative threats to the environment and human health. However, most existing membranes used in protective clothing and desalination systems show high fluorine dependence and inevitable trade-offs between liquid repellency and breathability. Herein, fluorine-free bonded scaffolded nanofiber/network membranes are developed using the electro-coating-netting technique to achieve high-performance liquid-repellency and breathability.
View Article and Find Full Text PDFMethyltrimethoxysilane (MTMS) has been used as a coupling agent in thermoplastics and thermosetting resins, a cross-linker in silicone sealants, a water repellent component, and in silicone hard-coats for plastics. Acute studies in experimental animals showed a low order of toxicity for MTMS via oral, dermal, and inhalation routes. MTMS was slightly irritating to both eyes and skin in rabbits.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China. Electronic address:
Due to the non-renewable nature of petroleum resources, there has been a notable shift toward utilizing biomass materials to confer flame retardant properties to cotton fabrics. However, endow solely with single function cannot meet the application requirements across various fields. Therefore, there is considerable impetus to develop multifunctional cotton fabrics integrating flame retardant, antimicrobial, and hydrophobic properties sourced from biomass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!