A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harnessing Microbial Effectors for Macrophage-Mediated Drug Delivery. | LitMetric

Harnessing Microbial Effectors for Macrophage-Mediated Drug Delivery.

ACS Omega

Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow 7505, South Africa.

Published: April 2024

Macrophage-based drug delivery systems are promising, but their development is still in its infancy, with many limitations remaining to be addressed. Our aim was to design a system harnessing microbial effectors to facilitate controlled drug cargo expulsion from macrophages to enable the use of more toxic drugs without adding to the risk of off-target detrimental effects. The pore forming and actin polymerizing effectors listeriolysin-O (LLO) and actin assembly-inducing protein (ActA) were synthesized using a novel green fluorescent protein (GFP)-linked heterologous expression system. These effectors were coated onto polystyrene beads to generate "synthetic cargo" before loading into primary M1 macrophages. Bead uptake and release from macrophages were evaluated by using high-throughput quantitative imaging flow cytometry and confocal microscopy. results confirmed appropriate activity of synthesized effectors. Coating of these effector proteins onto polystyrene beads (simulated drug cargo) resulted in changes in cellular morphology, bead content, and intracellular bead localization, which may support an interpretation of the induced release of these beads from the cells. This forms the basis for further investigation to fully elucidate any potential release mechanisms. Bacterial effectors ActA and LLO successfully effectuated actin polarization and protrusions from cell membranes similar to those seen in cells infected with spp., illustrating the potential of using these effectors and production methods for the development of an endogenous drug delivery system capable of low-risk, targeted release of high potency drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044259PMC
http://dx.doi.org/10.1021/acsomega.3c10519DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
harnessing microbial
8
microbial effectors
8
drug cargo
8
polystyrene beads
8
effectors
7
drug
5
effectors macrophage-mediated
4
macrophage-mediated drug
4
delivery macrophage-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!