Powdery mildew (Sphaerotheca macularis Mag. (syn. Podosphaera aphanis Wallr.)) is a dangerous disease of strawberry (Fragaria L.). The resistance of strawberry to powdery mildew is controlled polygenically. Several genetic loci with a large contribution to disease resistance have been identified in various strawberry varieties. Diagnostic DNA markers have been developed for QTL 08 To-f. They showed a high level of reliable gene detection in mapping populations. The purpose of this study was assessment of a strawberry genetic collection for resistance to powdery mildew and identification of promising strawberry forms for breeding for resistance to S. macularis. The objects of the study were wild species of the genus Fragaria L., varieties and selected seedlings of strawberry (Fragaria × ananassa Duch.) created in the I.V. Michurin Federal Scientific Center, and strawberry varieties introduced from various ecological and geographical regions. To identify QTL 08 To-f, DNA markers IB535110 and IB533828 were used. Locus 08 To-f was detected in 23.2 % of the analyzed strawberry genotypes, including wild species F. moschata and F. orientalis, strawberry varieties of Russian breeding (Bylinnaya and Sudarushka) and foreign breeding (Florence, Korona, Malwina, Ostara, Polka and Red Gauntlet). The correlation between the presence of markers IB535110 and IB533828 and phenotypic resistance (powdery mildew effect on strawberry plants is absent) was 0.649. The determination coefficient (R2 ) showing the contribution of the studied locus to the manifestation of the trait was 0.421, that is, in 42.1 % of cases resistance was explained by the presence of QTL 08 To-f, and in 57.9 % of cases, by other genetic factors. All strawberry genotypes with locus 08 To-f were characterized by high field resistance to S. macularis in the conditions of Michurinsk, Tambov region. Thus, locus 08 To-f is promising for conferring resistance on local powdery mildew races, and markers IB535110 and IB533828 can be used in marker-assisted breeding programs to create powdery mildewresistant strawberry genotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043506PMC
http://dx.doi.org/10.18699/vjgb-24-19DOI Listing

Publication Analysis

Top Keywords

powdery mildew
24
strawberry
13
strawberry fragaria
12
resistance powdery
12
strawberry varieties
12
qtl to-f
12
markers ib535110
12
ib535110 ib533828
12
locus to-f
12
strawberry genotypes
12

Similar Publications

Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber.

View Article and Find Full Text PDF

Introduction: Cotton, being a crucial cash crop globally, faces significant challenges due to multiple diseases that adversely affect its quality and yield. To identify such diseases is very important for the implementation of effective management strategies for sustainable agriculture. Image recognition plays an important role for the timely and accurate identification of diseases in cotton plants as it allows farmers to implement effective interventions and optimize resource allocation.

View Article and Find Full Text PDF

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Powdery mildew (PM), is a significant fungal disease that poses a considerable threat to global agricultural productivity. Autophagy and programmed cell death (PCD) are crucial plant defense responses against PM. However, the role of metacaspases (MCAs) in mediating the interplay between autophagy and PCD in wheat's resistance to PM remains unknown.

View Article and Find Full Text PDF

Effect of AM fungi on the growth and powdery mildew development of Astragalus sinicus L. under water stress.

Plant Physiol Biochem

December 2024

Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:

Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!