Phage display has become an efficient, reliable and popular molecular technique for generating libraries encompassing millions or even billions of clones of divergent peptides or proteins. The method is based on the correspondence between phage genotype and phenotype, which ensures the presentation of recombinant proteins of known amino acid composition on the surface of phage particles. The use of affinity selection allows one to choose variants with affinity for different targets from phage libraries. The implementation of the antibody phage display technique has revolutionized the field of clinical immunology, both for developing tools to diagnose infectious diseases and for producing therapeutic agents. It has also become the basis for efficient and relatively inexpensive methods for studying protein-protein interactions, receptor binding sites, as well as epitope and mimotope identification. The antibody phage display technique involves a number of steps, and the final result depends on their successful implementation. The diversity, whether natural or obtained by combinatorial chemistry, is the basis of any library. The choice of molecular techniques is critical to ensure that this diversity is maintained during the phage library preparation step and during the transformation of E. coli cells. After a helper phage is added to the suspension of transformed E. coli cells, a bacteriophage library is formed, which is a working tool for performing the affinity selection procedure and searching for individual molecules. Despite the apparent simplicity of generating phage antibody libraries, a number of subtleties need to be taken into account. First, there are the features of phage vector preparation. Currently, a large number of phagemid vectors have been developed, and their selection is also of great importance. The key step is preparing competent E. coli cells and the technology of their transformation. The choice of a helper phage and the method used to generate it is also important. This article discusses the key challenges faced by researchers in constructing phage antibody libraries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043502 | PMC |
http://dx.doi.org/10.18699/vjgb-24-29 | DOI Listing |
J Clin Microbiol
December 2024
Department of Pediatrics, University of Florida, Gainesville, Florida, USA.
Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.
View Article and Find Full Text PDFJ Virol
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, Beijing, China.
Unlabelled: Quorum sensing (QS) can regulate diverse critical phenotypic responses in (), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected PAO1.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.
Metagenomics has revealed the incredible diversity of phages within the human gut. However, very few of these phages have been subjected to in-depth experimental characterization. One promising method of obtaining novel phages for experimental characterization is through induction of the prophages integrated into the genomes of cultured gut bacteria.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan.
is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds, biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs).
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Background: Acinetobacter baumannii, particularly carbapenem-resistant strains (CRAB), poses a major concern in the fight against antimicrobial resistance (AMR), identified as a top-priority pathogen by the World Health Organization (WHO). A. baumannii has intrinsic resistance to several antibiotics, including penicillin, cephalosporins, chloramphenicol, and fosfomycin, but the development of AMR has led to the emergence of extremely drug-resistant and pan-resistant isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!