The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.247221 | DOI Listing |
Recent studies have revealed that many mosquito species regularly engage in high-altitude windborne migration, but its epidemiological significance was debated. The hypothesis that high-altitude mosquitoes spread pathogens over large distances has not been directly tested. Here, we report for the first time that high-altitude windborne mosquitoes are commonly infected with arboviruses, protozoans, and helminths affecting vertebrates and humans, and provide the first description of this pathogen-vector aerial network.
View Article and Find Full Text PDFParasit Vectors
January 2025
Center of Excellence in Veterinary Parasitology, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Background: The subfamily Phlebotominae comprises 1028 species of sand fly, of which only 90 are recognized as vectors of pathogenic agents such as Trypanosoma, Leishmania, and Bartonella. In Thailand, leishmaniasis-a sand fly-borne disease-is currently endemic, with 36 documented sand fly species. However, many cryptic species likely remain unidentified.
View Article and Find Full Text PDFCurr Res Insect Sci
December 2024
Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín 050010, Colombia.
Biodivers Data J
December 2024
University of Pécs, Faculty of Sciences, Department of Hydrobiology, Ifjúság útja 6, Pécs, Hungary University of Pécs, Faculty of Sciences, Department of Hydrobiology, Ifjúság útja 6 Pécs Hungary.
Plant Genome
March 2025
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China.
Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!