A Pd-catalyzed highly regio- and stereoselective hydrocyanation was developed, providing a novel approach to the stereodivergent synthesis of β-cyano-substituted acrylates in good yields with a wide substrate scope. The judicious selection of ligands was crucial for elegant control over the stereodivergence. Furthermore, the success of the -hydrocyanation hinges on the right matching of Pd and , which not only ensured the catalytic activity but also prevented the formation of α-cyanation products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c01192 | DOI Listing |
J Am Chem Soc
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
Herein, we report a method for enantioselective vinylogous addition of enones to alkoxyallenes enabled by synergistic borane/palladium catalysis. The inductive effect provided by borane coordination to the ketone was essential for closing the gap between the conditions needed for the generation of a dienolate and those needed for initiation of the palladium catalytic cycle by protonation of the metal catalyst. Furthermore, we accomplished the first example of stereodivergent synthesis with chiral borane/transition-metal catalysts.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemistry, University of Zurich, Zurich, Switzerland.
Chirality plays a critical role in the biochemistry of life and often only one enantiomeric series is observed (homochirality). Only a few natural products have been obtained as racemates, e.g.
View Article and Find Full Text PDFChem Sci
December 2024
Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance.
View Article and Find Full Text PDFChemistry
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
A synergistic Pd/Cu catalyst system has been developed for stereodivergent transformation of Morita-Baylis-Hillman (MBH) carbonates and Schiff bases derived from simple amino acids to afford a series of optically active β-branched γ-methyleneglutamic acid derivatives with adjacent tertiary/tertiary and quaternary/tertiary stereocenters in high yields (up to 96 %) with excellent diastereo- and enantioselectivities (>20/1 dr and >99 % ee in most cases) under mild conditions. The use of SKP ligand is disclosed to be crucial for the success of the transformation, and in particular allowing the reaction to proceed at low catalyst loading (0.02 mol % for Pd and 0.
View Article and Find Full Text PDFChem Soc Rev
December 2024
Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
Catalytic asymmetric conjugate additions of carbon nucleophiles have emerged as a potent tool for constructing multi-stereogenic molecules with precise stereochemical control. This review explores the concept of diastereodivergence in such reactions, focusing on strategies to achieve selective access to diverse diastereomeric products upon carbon-carbon bond formation. Drawing from a rich array of examples, we delve into key approaches for controlling the stereochemical outcome of these transformations, including alteration of alkene geometry, fine-tuning of reaction parameters, synergistic catalysis, and isomerization of conjugate adducts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!