Comprehensive Analysis of a Dendritic Cell Marker Genes Signature to Predict Prognosis and Immunotherapy Response in Lung Adenocarcinoma.

J Immunother

Department of Thoracic Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Published: January 2025

With the development of immune checkpoints inhibitors (ICIs), immunotherapy has recently taken center stage in cancer treatment. Dendritic cells exert complicated and important functions in antitumor immunity. This study aims to construct a novel dendritic cell marker gene signature (DCMGS) to predict the prognosis and immunotherapy response of lung adenocarcinoma (LUAD). DC marker genes in LUAD were identified by analysis of single-cell RNA sequencing data. 6 genes ( G0S2, KLF4, ALDH2, IER3, TXN, CD69 ) were screened as the most prognosis-related genes for constructing DCMGS on a training cohort from TCGA data set. Patients were divided into high-risk and low-risk groups by DCMGS risk score based on overall survival time. Then, the predictive ability of the risk model was validated in 6 independent cohorts. DCMGS was verified to be an independent prognostic factor in multivariate analysis. Furthermore, we performed pathway enrichment analysis to explore possible biological mechanisms of the powerful predictive ability of DCMGS, and immune cell infiltration landscape and inflammatory activities were exhibited to reflect the immune profile. Notably, we bridged DCMGS with expression of immune checkpoints and TCR/BCR repertoire diversity that can inflect immunotherapy response. Finally, the predictive ability of DCMGS in immunotherapy response was also validated by 2 cohorts that had received immunotherapy. As a result, the patients with lower DCMGS risk scores showed a better prognosis and immunotherapy response. In conclusion, DCMGS was suggested to be a promising prognostic indicator for LUAD and a desirable predictor for immunotherapy response.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CJI.0000000000000521DOI Listing

Publication Analysis

Top Keywords

immunotherapy response
24
prognosis immunotherapy
12
predictive ability
12
dcmgs
9
dendritic cell
8
cell marker
8
marker genes
8
predict prognosis
8
immunotherapy
8
response lung
8

Similar Publications

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumour effect of JS-201 combined with radiotherapy and the effect on radiation-induced lung injury (RILI).

View Article and Find Full Text PDF

Regulatory T Cells for Stroke Recovery: A Promising Immune Therapeutic Strategy.

CNS Neurosci Ther

January 2025

Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.

Background: Stroke remains a leading cause of mortality and disability among adults. Given the restricted therapeutic window for intravascular interventions and neuroprotection during the acute phase, there has been a growing focus on tissue repair and functional recovery in the subacute and chronic phases after stroke. The pro-inflammatory microglial polarization occurs in subacute and chronic phases after stroke and may represent therapeutic targets for stroke recovery.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.

View Article and Find Full Text PDF

In recent years, novel therapeutic approaches have revolutionized the landscape of medicine, offering promising avenues for the cure of various diseases. The novel approaches explore advancements in gene therapy in pharmaceuticals, immunotherapy, RNA-based therapeutics, cell-based therapies, and targeted tumor therapies. Gene therapy has emerged as a groundbreaking approach, leveraging genetic material to cure or prevent diseases by targeting defective genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!