The heme binding protein ChuX is a regulator of heme degradation by the ChuS protein in Escherichia coli O157:H7.

J Inorg Biochem

Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Quebec city, QC, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada. Electronic address:

Published: July 2024

Escherichia coli O157:H7 possesses an 8-gene cluster (chu genes) that contains genes involved in heme transport and processing from the human host. Among the chu genes, four encode cytoplasmic proteins (ChuS, ChuX, ChuY and ChuW). ChuX was previously shown to be a heme binding protein and to assist ChuW in heme degradation under anaerobic conditions. The purpose of this work was to investigate if ChuX works in concert with ChuS, which is a protein able to degrade heme by a non-canonical mechanism and release the iron from the porphyrin under aerobic conditions using hydrogen peroxide as the oxidant. We showed that when the heme-bound ChuX and apo-ChuS protein are mixed, heme is efficiently transferred from ChuX to ChuS. Heme-bound ChuX displayed a peroxidase activity with ABTS and HO but not heme-bound ChuS, which is an efficient test to determine the protein to which heme is bound in the ChuS-ChuX complex. We found that ChuX protects heme from chemical oxidation and that it has no heme degradation activity by itself. Unexpectedly, we found that ChuX inhibits heme degradation by ChuS and stops the reaction at an early intermediate. We determined using surface plasmon resonance that ChuX interacts with ChuS and that it forms a relatively stable complex. These results indicate that ChuX in addition to its heme transfer activity is a regulator of ChuS activity, a function that was not described before for any of the heme carrier protein that delivers heme to heme degradation enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2024.112575DOI Listing

Publication Analysis

Top Keywords

heme degradation
20
heme
15
chux
11
heme binding
8
binding protein
8
chus
8
degradation chus
8
chus protein
8
escherichia coli
8
coli o157h7
8

Similar Publications

Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.

Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.

View Article and Find Full Text PDF

Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Potential therapeutic effect of dimethyl fumarate on Treg/Th17 cell imbalance in biliary atresia.

Clin Immunol

January 2025

Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:

The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.

View Article and Find Full Text PDF

Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!