Present study examines the possible improvement of thermal discomfort mitigation. Unlike prior researches, which focused primarily on cooling effects of urban blue space, this study, instead of physical presence of blue space considers its hydrological components. The aim of the study is to better understand the role hydrological components like water consistency depth etc. In temperature regulation. The work uses field surveys and modeling to demonstrate how these hydrological factors influence the cooling effect of blue space, providing insights on urban thermal management. To fulfill the purpose, spatial association of hydrological components blue space with its thermal environment and cooling effects was assessed. The control of hydrological components on the surrounding air temperature was examined by conducting case studies. RESULTS: reveals greater hydro-duration, deeper water, and higher Water Presence Frequency (WPF) produce greater cooling effects. The study demonstrates a favorable correlation between hydrological richness and temperature reduction. The study also analyzes how land use and wetland size affect temperature, emphasizing the significance of hydrological conservation and restoration for successful temperature mitigation. Due to their hydrology, larger wetlands are able to moderate temperature to some extent, whereas smaller, fragmented wetlands being hydrologically poor are not so influential in this regard. With these results, the present study reaches beyond to the general understanding regarding the cooling effects of the urban blue spaces. While the previous studies primarily focused on estimating the cooling effect of urban blue space, the current one shows its synchronization with the hydrological characteristics. Novelty also entrusts here, through the modeling and field survey current study demonstrates deeper and consistent water coverage in the urban blue space for maximum period of a year pronounces the cooling effect. In addition, in this cooling effect, the role of land use which is a strong determinant of many aspects of the urban environment is also highlighted. Since all these findings define specific hydrological feature, the study has several practical implications. Mare restoration of urban blue space is not enough to mitigate the thermal discomfort. In order to optimize the cooling effect, the conservation of the hydrological richness is essential. The hydrological richness of the smaller wetlands and the edge of the larger wetlands is to be improved. The connection of these wetlands with the adjacent mighty may strengthen the hydrology. The vegetation was found to promote the cooling effect whereas shorter building helped in spreading the cooling effect. Such finding drives to incorporate the blue space with the green infrastructure along with restricting the building height atleast at the edge of the blue space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120959 | DOI Listing |
Geroscience
January 2025
Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
Low indoor light in urban housing can disrupt health and wellbeing, especially in older adults who experience reduced light sensitivity and sleep/circadian disruptions with natural aging. While controlled studies suggest that enhancing indoor lighting may alleviate the negative effects of reduced light sensitivity, evidence for this to be effective in the real world is lacking. This study investigates the effects of two light conditions on actigraphic rest-activity rhythms and subjective sleep in healthy older adults (≥ 60 years) living at home.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Division of Orthopedics, The third affiliated hospital of Sun Yat-sen university, Guangzhou 510530, China.
This study aimed to investigate the regulation of fibroblast phenotypes by MSCs delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, PCA dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes.
View Article and Find Full Text PDFAstrobiology
January 2025
Department of Earth and Planetary Sciences, Birkbeck University of London, London, United Kingdom.
Eccentric planets may spend a significant portion of their orbits at large distances from their host stars, where low temperatures can cause atmospheric CO to condense out onto the surface, similar to the polar ice caps on Mars. The radiative effects on the climates of these planets throughout their orbits would depend on the wavelength-dependent albedo of surface CO ice that may accumulate at or near apoastron and vary according to the spectral energy distribution of the host star. To explore these possible effects, we incorporated a CO ice-albedo parameterization into a one-dimensional energy balance climate model.
View Article and Find Full Text PDFOccup Environ Med
January 2025
Lifestyles and Living Environments Unit, Finnish Institute for Health and Welfare, Oulu, Finland.
Objective: To assess the role of occupational noise exposure on pregnancy complications in urban Nordic populations.
Methods: A study population covering five metropolitan areas in Denmark, Finland, Norway and Sweden was generated using national birth registries linked with occupational and residential environmental exposures and sociodemographic variables. The data covered all pregnancies during 5-11 year periods in 2004‒2016, resulting in 373 184 pregnancies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!