Phosphorus-doped nickel cobalt oxide (NiCoO) wrapped in 3D hierarchical hollow N-doped carbon nanoflowers as highly efficient bifunctional electrocatalysts for overall water splitting.

J Colloid Interface Sci

Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China. Electronic address:

Published: August 2024

Properly design and fabricate capable electrocatalysts with 3D hierarchical hollow framework to realize cost-effective and efficacious overall water splitting (OWS) are particularly meaningful for the large-scale arrangement of pivotal energy technology. In this study, P-doped NiCoO nanoparticles encapsulated in N-doped carbon hierarchical hollow nanoflowers (P-NiCoO@NCHHNFs) were constructed using the hydrothermal-pyrolysis-phosphorization approach. This fascinating architecture can not merely serve as a conductive pathway for electron transfer, but at the same time effectively inhibited the aggregation and corrosion of the NiCoO nanoparticles. Additionally, the P doping not only regulates electronic structure configuration to boost the intrinsic activity of the catalyst, but also enhance electrochemical surface areas to reveal more accessible active sites. Attributing to these characteristics, the as-prepared P-NiCoO@NCHHNFs exhibit preeminent electrocatalytic performance with low overpotentials of 283 mV and 162 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) (at 10 mA cm), respectively. Specifically, by using the P-NiCoO@NCHHNFs as bifunctional catalysts, a low potential of 1.56 V (at 10 mA cm) is sufficient to drive overall water splitting with splendid durability. This study proposed an innovative strategy for the conceiving and fabricating high-performance catalysts via heteroatom-doping.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.156DOI Listing

Publication Analysis

Top Keywords

hierarchical hollow
12
water splitting
12
n-doped carbon
8
nicoo nanoparticles
8
evolution reaction
8
phosphorus-doped nickel
4
nickel cobalt
4
cobalt oxide
4
oxide nicoo
4
nicoo wrapped
4

Similar Publications

Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Efficient Electrosynthesis of Hydrogen Peroxide Enabled by a Hierarchical Hollow RE-P-O (RE = Sm, La, Gd) Architecture with Open Channels.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.

The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.

View Article and Find Full Text PDF

Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels.

Nat Commun

January 2025

Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.

View Article and Find Full Text PDF

Atmospheric Pressure Alkaline Etching of MFI Zeolite Under Mild Temperature Toward Hollow Microstructure and Ultralow k Film.

Small Methods

December 2024

Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China.

Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!