Mucosal-associated invariant T cells promote ductular reaction through amphiregulin in biliary atresia.

EBioMedicine

Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. Electronic address:

Published: May 2024

Background: Biliary atresia (BA) is a neonatal fibro-inflammatory cholangiopathy with ductular reaction as a key pathogenic feature predicting poor survival. Mucosal-associated invariant T (MAIT) cells are enriched in human liver and display multiple roles in liver diseases. We aimed to investigate the function of MAIT cells in BA.

Methods: First, we analyzed correlations between liver MAIT cell and clinical parameters (survival, alanine transaminase, bilirubin, histological inflammation and fibrosis) in two public cohorts of patients with BA (US and China). Kaplan-Meier survival analysis and spearman correlation analysis were employed for survival data and other clinical parameters, respectively. Next, we obtained liver samples or peripheral blood from BA and control patients for bulk RNA sequencing, flow cytometry analysis, immunostaning and functional experiments of MAIT cells. Finally, we established two in vitro co-culture systems, one is the rhesus rotavirus (RRV) infected co-culture system to model immune dysfunction of human BA which was validated by single cell RNA sequencing and the other is a multicellular system composed of biliary organoids, LX-2 and MAIT cells to evaluate the role of MAIT cells on ductular reaction.

Findings: Liver MAIT cells in BA were positively associated with low survival and ductular reaction. Moreover, liver MAIT cells were activated, exhibited a wound healing signature and highly expressed growth factor Amphiregulin (AREG) in a T cell receptor (TCR)-dependent manner. Antagonism of AREG abrogated the proliferative effect of BA MAIT cells on both cholangiocytes and biliary organoids. A RRV infected co-culture system, recapitulated immune dysfunction of human BA, disclosed that RRV-primed MAIT cells promoted cholangiocyte proliferation via AREG, and further induced inflammation and fibrosis in the multicellular system.

Interpretation: MAIT cells exhibit a wound healing signature depending on TCR signaling and promote ductular reaction via AREG, which is associated with advanced fibrosis and predictive of low survival in BA.

Funding: This work was funded by National Natural Science Foundation of China grant (82001589 and 92168108), National Key R&D Program of China (2023YFA1801600) and by Basic and Applied Basic Research Foundation of Guangdong (2020A1515110921).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077624PMC
http://dx.doi.org/10.1016/j.ebiom.2024.105138DOI Listing

Publication Analysis

Top Keywords

mait cells
40
ductular reaction
16
liver mait
12
cells
11
mait
11
mucosal-associated invariant
8
promote ductular
8
biliary atresia
8
clinical parameters
8
inflammation fibrosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!