Ceramide sorting into non-vesicular transport is independent of acyl chain length in budding yeast.

Biochem Biophys Res Commun

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan. Electronic address:

Published: June 2024

The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids. However, if non-vesicular ceramide transport in yeast similarly favors short chain ceramides remained unanswered. Here we employed a yeast GhLag1 strain in which the endogenous ceramide synthase is replaced by the cotton-derived GhLag1 gene, resulting in the production of short chain C18 rather than C26 ceramides. We show that block of vesicular transport through ATP-depletion or the use of temperature-sensitive sec mutants caused a reduction in inositolphosphorylceramide (IPC) synthesis to similar extent in WT and GhLag1 backgrounds. Since the remaining IPC synthesis is a readout for non-vesicular ceramide transport, our results indicate that non-vesicular ceramide transport is neither blocked nor facilitated when only short chain ceramides are present. Therefore, we propose that the sorting of ceramide into non-vesicular transport is independent of acyl chain length in budding yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.149980DOI Listing

Publication Analysis

Top Keywords

non-vesicular ceramide
16
ceramide transport
16
short chain
16
non-vesicular transport
12
ceramide
10
transport
10
transport independent
8
independent acyl
8
acyl chain
8
chain length
8

Similar Publications

Ceramide sorting into non-vesicular transport is independent of acyl chain length in budding yeast.

Biochem Biophys Res Commun

June 2024

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan. Electronic address:

The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids.

View Article and Find Full Text PDF

Locational and functional characterization of PI4KB in the mouse embryo.

J Cell Physiol

April 2024

Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China.

Phosphatidylinositol 4-kinase beta (PI4KB) is a member of the PI4K family, which is mainly enriched and functions in the Golgi apparatus. The kinase domain of PI4KB catalyzes the phosphorylation of phosphatidylinositol to form phosphatidylinositol 4-phosphate, a process that regulates various sub-cellular events, such as non-vesicular cholesterol and ceramide transport, protein glycosylation, and vesicle transport, as well as cytoplasmic division. In this study, a strain of PI4KB knockout mouse, immunofluorescence, reverse transcription polymerase chain reaction and microinjection were used to characterize the cytological location and biological function of PI4KB in the mouse embryos.

View Article and Find Full Text PDF

A wide range of fluorescent dyes and reagents exist for labeling organelles in live and fixed cells. Choosing between them can lead to confusion, and optimization for many of them can be challenging. Presented here is a discussion on the commercially available reagents that have shown the most promise for each organelle of interest, including endoplasmic reticulum/nuclear membrane, Golgi apparatus, mitochondria, nucleoli, and nuclei, with an emphasis on localization of these structures for microscopy.

View Article and Find Full Text PDF

Pathogen vacuole membrane contact sites - close encounters of the fifth kind.

Microlife

April 2023

Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland.

Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids.

View Article and Find Full Text PDF

The formation of extracellular vesicles (EVs) is induced by the sphingolipid ceramide. How this pathway is regulated is not entirely understood. Here, we report that the ceramide transport protein (CERT) mediates a non-vesicular transport of ceramide between the endoplasmic reticulum (ER) and the multivesicular endosome at contact sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!