A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kelp holdfast microclimates buffer invertebrate inhabitants from extreme temperatures. | LitMetric

Kelp holdfast microclimates buffer invertebrate inhabitants from extreme temperatures.

Mar Environ Res

Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.

Published: June 2024

Climate change is altering environmental conditions, with microclimates providing small-scale refuges within otherwise challenging environments. Durvillaea (southern bull kelp; rimurapa) is a genus of large intertidal fucoid algae, and some species harbour diverse invertebrate communities in their holdfasts. We hypothesised that animal-excavated Durvillaea holdfasts provide a thermal refuge for epibiont species, and tested this hypothesis using the exemplar species D. poha. Using a southern Aotearoa New Zealand population as a case-study, we found extreme temperatures outside the holdfast were 4.4 °C higher in summer and 6.9 °C lower in winter than inside the holdfast. A microclimate model of the holdfasts was built and used to forecast microclimates under 2100 conditions. Temperatures are predicted to increase by 2-3 °C, which may exceed the tolerances of D. poha. However, if D. poha or a similar congeneric persists, temperatures inside holdfasts will remain less extreme than the external environment. The thermal tolerances of two Durvillaea-associated invertebrates, the trochid gastropod Cantharidus antipodum and the amphipod Parawaldeckia kidderi, were also assessed; C. antipodum, but not P. kidderi, displayed metabolic depression at temperatures above and below those inside holdfasts, suggesting that they would be vulnerable outside the holdfast and with future warming. Microclimates, such as those within D. poha holdfasts or holdfasts of similar species, will therefore be important refuges for the survival of species both at the northern (retreating edge) and southern (expanding edge) limits of their distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106523DOI Listing

Publication Analysis

Top Keywords

extreme temperatures
8
temperatures inside
8
inside holdfasts
8
holdfasts
7
temperatures
5
species
5
kelp holdfast
4
microclimates
4
holdfast microclimates
4
microclimates buffer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!